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Editorial

Dear Readers,

Welcome to the latest edition of Argo Magazine, where we explore
the innovative approaches and emerging trends that are transforming the
financial landscape.

This issue brings together a selection of articles that spanning key top-
ics in credit risk management and financial innovation. They offer theoretical
insights and practical frameworks for implementation.

Opening with the Innovation section, the first article, "iason-Nuant
Optimal Cross-Pool Liquidity Provision Strategy" by Jacopo Mancin
and Antonio Scarinci, tackles the challenge of optimal automated market
making in decentralized crypto-asset liquidity pools. Using advanced mathe-
matical modelling and portfolio allocation techniques, the authors propose a
multi-pool strategy that balances diversification with independent execution,
mitigating impermanent losses while optimizing rebalancing costs.

The section concludes with "Market Scenario Generation with
GenAI" by Michele Bonollo, Antonio Menegon, Giuseppe Crupi and Cate-
rina Papetti. This forward-looking paper explores how generative artificial
intelligence can revolutionize scenario generation for stress testing and risk
management. By leveraging advanced models such as GANs, VAEs, and
Transformer-based architectures, the authors outline a roadmap for deploying
next-generation tools that enhance realism and interpretability in market
simulations.

Closing this edition, the Credit Risk section features the article “A
Common Collateral Pooling Arrangement for Corporate Lending” by
Antonio Castagna, proposes a mutual collateral scheme designed to improve
the credit quality of corporate loan portfolios. By analysing the extent of the
credit protection provided and outlining compensation mechanisms based
on actuarial and financial fairness principles, this work offers a compelling
perspective on collaborative risk mitigation strategies.
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We hope that this edition will offer valuable insights into the techno-
logical and credit risk dimensions of modern finance, inspiring new ideas
and encouraging informed discussions. As always, we invite you to engage
with these topics and share your perspectives with us.

Enjoy your read!

Antonio Castagna
Luca Olivo

Giulia Perfetti
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USA vs EU: Use and Oversight of AI in Financial Services

AI is transforming the financial sector in the US and the EU by
increasing efficiency, reducing costs, and improving credit decisions,
fraud detection, and customer services. The use of alternative data is
expanding financial inclusion.

Regulators are adopting different approaches: a flexible, reactive
model in the US; and a preventive, rigorous framework in the EU
through the AI Act and harmonized standards.

read more

Date January 2026

AI Agents: An Introduction to Agentic Systems, Market Impact, and Future Risks

The rise of Agentic AI marks a significant step forward moment in
the current AI revolution, marked by accelerating technological
breakthroughs and massive capital deployment. Unlike previous AI
developments, Agentic AI holds the promise of significant practical
utility and adaptability, already demonstrating early capabilities as a
powerful automation tool, which presents unprecedented
opportunities alongside new complexities.

read more

Date November 2025

ICT Risk: Focus on Thread-Led Penetration Testing (TLPT)

Threat-Led Penetration Testing (TLPT) represents a cornerstone of the
European Union’s strategy to enhance the cyber resilience of financial
institutions. Mandated by the Digital Operational Resilience Act (DORA)
and operationalized through the TIBER - EU framework, TLPT simulates
sophisticated cyberattacks based on real -world threat intelligence to
assess an entity’s ability to detect, respond to, and recover from advanced
threats.

read more

Date August 2025

Argo Magazine
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Artificial Intelligence: Financial Industry Market Overview

Starting Artificial Intelligence, and in particular GenAI, is
increasingly being adopted across a wide range of industries, with
significant capital investment and a growing number of business
functions being reshaped.

The financial industry has traditionally been among the earliest
adopters of technological innovation, aiming to enhance productivity
and improve operational efficiency. The same trend holds true for AI
and GenAI, where the industry continues to be at the forefront of
adoption.

read more

Date July 2025

ECB: SREP 2025 and SSM Priorities 2026-2028

The 2025 Supervisory Review and Evaluation Process (SREP) shows
that the banks supervised by the ECB have continued to exhibit
strong capital positions, solid leverage ratios, and comfortable
liquidity buffers. Profitability remains robust, with return on equity
reaching 10.1%, up from 9.5% in Q4 2024. Asset quality remains
sound overall, though non-performing loan (NPL) ratios are higher in
the non-residential real estate and SME segments. Key areas of
supervisory concern include elevated leveraged finance and
insufficient provisioning for non-performing exposures.

read more

Date January 2026

Credit Risk Meets Large Language Models

The study addresses the issue of information asymmetry in peer-to-
peer lending, where lenders often lack sufficient data to assess
borrower credit. By applying BERT (Bidirectional Encoder
Representations from Transformers), a Large Language Model, the
authors generate a credit risk score based on the borrowers’
description of the credit request. Once integrated into a XGBoost
model with traditional inputs, this score improves predictive
accuracy and AUC (Area Under Curve), demonstrating the value of
combining textual insights with standard credit data.

read more

Date September 2025
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Counterparty Credit Risk Exploratory Scenario Exercise

The ECB conducted an exploratory scenario exercise to assess
counterparty credit risk (CCR) among 15 Euro-area banks selected
based on quantitative criteria derived from 2023 EBA stress test.
Participants were mainly banks with high CCR exposure towards
non-bank financial institutions (NBFIs).

The exercise focused on vulnerabilities linked to exposures to NBFIs
and evaluated banks’ stress-testing capabilities under multiple
adverse scenarios.

read more

Date September 2025

Guidelines for Integrating ESG Risks into Stress Testing

The Joint Guidelines developed by the European Supervisory
Authorities (ESAs) aim to ensure the consistent integration of
environmental, social, and governance (ESG) risks into supervisory
stress testing by competent authorities.
These guidelines provide a structured approach for incorporating
ESG risks either within existing frameworks or through
complementary assessments. They emphasize the importance of clear
methodological principles, adequate resource allocation, robust data
infrastructure, and effective governance.

read more

Date August 2025

EBA Guidelines on Environmental Scenario Analysis: Usage and Limitations

The EBA Guidelines on environmental scenario analysis
(EBA/GL/2025/04) set out supervisory expectations for financial
institutions to systematically conduct environmental scenario
analysis, strengthening forward-looking risk assessment and
management of environmental, especially climate-related, risks. They
require institutions to integrate such scenario analyses into existing
stress-testing frameworks to assess short-term impacts on capital and
liquidity and to evaluate medium- and long-term business model
resilience under plausible future conditions.

read more

Date January 2026
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Regulatory/Supervisory Pills

Among iason's various publications we also find the iason Pills.

With these daily Pills, iason aims to offer a summary on information,
mostly, of the main regulatory and supervisory news in the banking
and finance sector on both Pillar I and Pillar II risks of the Basel
framework. The main purpose of these publications is to give the
reader an effective, timely and brief overview of the main topics of
the moment.

The author of the Iason Pills is Dario Esposito.
read more

Market View

Among iason’s weekly insight you can also find the iason Market
View, a weekly update on financial market by Sergio Grasso.

The author, with almost three decades of investment experience,
presents an accurate analysis of market fluctuations of the week,
giving a critical view of observed phenomenos and suggesting
interesting correlations with the main world events.
read more

iason Weekly Insights 
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In this work, we tackle the problem of optimal Automated Market Making in Decentralized Crypto-
Asset Liquidity Pools. We reviewed the approaches defined in the literature for defining an
optimal strategy to be executed on a single liquidity pool, taking into account both rebalancing

costs and impermanent losses. Hence, supposing the spot exchange rates to be driven by an elliptically
distributed noise and exploiting their spectral properties, we derive an optimal multi-pool portfolio
allocation method able to achieve two goals at the same time: diversify effectively the exposure of
the agent’s wealth and allow for the execution of the aforementioned strategy independently in each
liquidity pool.

Decentralized Finance (DeFi) has
emerged as one of the most sig-
nificant technological innovations

of recent years. In this ecosystem, a
wide range of crypto-assets has been intro-
duced, together with cross-cryptocurrency
exchange protocols that algorithmically
regulate the interaction between supply
and demand across different digital as-
sets. Among these, Decentralized Exchange
(DEX) protocols – such as Uniswap – rely
on the presence of Liquidity Providers
(LPs), who function as market makers. LPs
supply liquidity by depositing pairs of
cryptocurrencies into decentralized trading
venues known as liquidity pools, adher-
ing to a predefined set of protocol-specific
rules.
Given the availability of multiple exchange
rates and liquidity pools, an LP is faced
with the problem of determining how to
optimally allocate their capital across differ-
ent pools. Thus, the liquidity provision de-
cision can be framed as an optimal wealth
allocation problem.
In this paper, we address this problem from
two complementary perspectives. First, we
analyze an optimal liquidity provision strat-
egy tailored to cryptocurrency pairs traded
under the Uniswap V3 protocol. Second,
we consider liquidity provision strategies
as investable assets and formulate a portfo-
lio optimization problem at the LP level.
The structure of the paper is as follows. In
Section “Optimal Liquidity Provision: Case
of Single Pool”, we review the optimal liq-
uidity provision framework proposed in [3],
which we adopt as a baseline model. In Sec-
tion “Optimal Liquidity Provision: Case of

Multiple Pools”, we extend this framework
to the setting in which an LP distributes cap-
ital across multiple liquidity pools. Section
“Agnostic Risk Parity Portfolio” introduces
the concept of Agnostic Risk Parity portfo-
lios, which provide more diversified alloca-
tions and reduce sensitivity to estimation
errors in the covariance matrix of expected
returns. Finally, in Section “The Strategy”,
we combine these elements to construct an
optimal multi-pool liquidity provision strat-
egy. A numerical implementation will be
explored in future work.

Constant Function Markets and
Concentrated Liquidity

Constant Function Markets (CFM)

Consider two cryptocurrencies X and Y.
A liquidity pool is a decentralized trading
venue in which LPs lock some amounts of
asset X and asset Y to make them available
for trading activity to any willing agent,
called liquidity taker (from now on LT), at
an exchange rate Z. The economic rationale
for an LP to provide its assets is the possi-
bility to earn fees as compensation for the
liquidity provision activity.
A Constant Function Market (CFM) is a liq-
uidity pool in which:

f (qX, qY) = κ2.

For some function f monotonically increas-
ing both in qX and in qY. This entails that
the total amount qX and qY of asset X and
asset Y respectively locked into the pool is

18 www.iasonltd.com
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given by:
qX = φκ(qY),

where φκ is a decreasing level function of
the market function f at the liquidity level
κ. Hence, whenever a LT wants to swap y
units of asset Y, the amount x of asset X
that he can obtain must verify the following
relation:

f (qX + (1 − τ)x, qY − y) = κ2,

where τ represents the fee rate to be paid
to LPs as compensation for their liquidity
provision activity. As a result, the execution
exchange rate, i.e. the exchange rate at which
any liquidity taking trade is performed, is
given by:

Z̃(y) =
φκ(qY − y)− φκ(qY)

(1 − τ)y
.

Similarly, whenever a LT wants to swap x
units of asset X the amount y of asset Y
that he can obtain satisfies:

f (qX − x, qY + (1 − τ)y) = κ2,

and the consequent execution exchange rate
is given by:

Z̃(−y) =
φκ(qY)− φκ(qY + (1 − τ)y)

y
.

Hence, the spot exchange rate quoted on
the liquidity pool is given by:

Z = lim
y→0

Z(y) = − 1
1 − τ

φ′
κ(qY).

On the other hand, liquidity provision
should not impact the spot exchange rate.
Hence, when liquidity provision is per-
formed by LPs:

Z =
qX

qY
=

qX + x
qY + y

.

In the case of the UniswapV2 protocol, one
of the most used Constant Function Market:

f (qX, qY) := qXqY = κ2, φκ(qY) =
κ2

qY
,

Z =
qX

qY
.

CFMs with Concentrated Liquidity (CFM-
CL)

In CFMs, LPs are forced to offer liquid-
ity at any possible exchange rate, deter-
mined by the dynamics of LT transactions.
Constant Function Markets with Concen-
trated Liquidity, on the other hand, adds
the possibility for LPs to select specific price
boundaries to provide their liquidity within,
whose bounds should be chosen among a
set of discrete price ticks {Z1, Z2, ..., Zn}. The
smallest range (Zi, Zi+1] is called tick range.
Let the liquidity provider choose a price
interval (Zl , Zu]. For any chosen range, the
LP’s asset amounts x and y are specified by
key formulae, which determine what assets
the LP holds depending on where the pool
price currently sits relative to the chosen
boundaries:


x = 0 if Z ≤ Zℓ

x = κ̃
(

Z1/2 − (Zℓ)1/2
)

if Zℓ < Z ≤ Zu

x = κ̃
(
(Zu)1/2 − (Zℓ)1/2

)
if Z > Zu

,


y = κ̃

(
(Zℓ)−1/2 − (Zu)−1/2

)
if Z ≤ Zℓ

y = κ̃
(

Z−1/2 − (Zu)−1/2
)

if Zℓ < Z ≤ Zu

y = 0 if Z > Zu

.

This implies that:

• If Z ≤ Zl the LP only holds Y;

• If Z > Zu the LP only holds X.

These formulae dictate how the LP’s hold-
ings evolve within the range (Zl , Zu]1 and
what they receive upon exiting the pool.
Liquidity depth κ within a tick range
(Zl , Zu] is constant unless more liquid-
ity is deposited or withdrawn. When
the marginal price crosses any of the tick

1A LP can quote several ranges at the same time.
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boundaries, the pool must execute distinct
trades using the appropriate depth for each
tick. Aggregate liquidity depth in a given
tick is determined by summing the depths
of all LP positions in that range.

κ = ∑
i

κ̃i.

Let p the total amount of fees of the pool.
The amount of fees earned by an LP is pro-
portional to the ratio between the LP’s share
of liquidity κ̃ and the total liquidity of the
pool κ:

p̃ =
κ̃

κ
p · 1Zℓ<Z≤Zu .

This implies that LPs who concentrate more
liquidity in narrower ticks capture a greater
share of fees in the range selected (Zl , Zu],
but this increases the concentration risk,
i.e. the chance that the price leaves the tick
range letting the LP liquidity switch from
being active (i.e. available for LT transac-
tions) to being inactive (i.e. unavailable for
LT transactions).
UniswapV3 is an example of CFM with CL
and will be the protocol in which the anal-
ysis of the liquidity provision strategies in-
troduced in the next sections will be carried
out.

Optimal Liquidity Provision:
Case of Single Pool

Basic Assumptions

Two assets X and Y are assumed to be ex-
changed in a CFM with CL. Each LP must
choose a range (Zl , Zu] such that he is will-
ing to buy or sell to any LT an amount x of
the first or y second asset at an exchange
rate within the bounds Zl , Zu of the range.
Such bounds must be chosen by the LP in
a grid {Zi}N

i=1.
The marginal exchange rate Zt expressing
the amount of asset X received per each
unit of asset Y is assumed to follow the
stochastic dynamics given by:

dZt = µtZtdt + σZtdWt,

where:

• µt: Drift process with finite fourth mo-
ment;

• σ: Volatility coefficient, assumed to be
constant;

• Wt: Standard Brownian motion.

The quantities x and y of assets X and Y al-
located by an LP can be expressed in terms
of the depth of the LP liquidity in the pool
κ, i.e. the percentage of assets X and Y al-
located by the LP over the whole amount
allocated by all the LPs in the pool mea-
sured in a reference numeraire (for instance
USDC):

xt = κ
(
(Zu

t )
1/2 − (Zℓ

t )
1/2
)

,

yt = κ
(
(Zℓ

t )
−1/2 − (Zu

t )
−1/2

)
.

Wealth Dynamics

In [3], the authors develop an optimal strat-
egy for dynamically managing liquidity in
a CFM. The goal is to maximize the LP’s ter-
minal wealth, which includes fees earned
from trades and P&L from market-making.
The strategy adjusts the liquidity range and
skew based on the DEX spot.
For log-utility preferences, they derive an
explicit solution that navigates the trade-
off between collecting fees and managing
impermanent loss. When volatility rises,
the LP broaden the liquidity range to pre-
vent the possibility of seeing her liquidity
inactive. In extreme cases of high volatility,
the LP may exit the pool entirely as liquid-
ity provisioning can become unprofitable.
On the other hand, increased fee potential
due to higher trading activity encourages
concentrating liquidity in a narrow band
around the exchange rate, balanced against
the risks of range concentration. When the
marginal exchange rate exhibits stochastic
drift, the strategy shifts liquidity placement
to capture trading flows and capitalize on
expected rate changes.
The LP’s wealth, expressed in units of asset

20 www.iasonltd.com
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X, can be decomposed additively:

x̃t = αt + pt + ct,

where the processes αt, pt and ct represent:

1. Position Value (αt): total asset value
of the LP in the liquidity pool;

2. Fee Revenue (pt): income from fees
earned by the LP and paid by LTs;

3. Rebalancing Costs (ct): Costs in-
curred while adjusting liquidity
ranges.

In the following we provide a brief descrip-
tion of each aforementioned component.

Position Value

The position value αt evolves according to
the following stochastic differential equa-
tion:

dαt =
x̃t

δℓ + δu

(
−σ2

2
dt + µtδudt + σδudWt

)
= dPLt +

x̃t

δℓ + δu
(µtδudt + σδudWt) ,

where:

• x̃t: the LP’s wealth in the reference
numeraire;

• δu and δℓ: control parameters defining
the upper and lower bounds of the liq-
uidity range, such that the liquidity
range is defined like:{

(Zu
t )

1/2 = Z1/2
t /(1 − δu

t /2),

(Zl
t)

1/2 = Z1/2
t (1 − δl

t/2).
(1)

The deterministic component:

dPLt = −σ2

2
· x̃t

δℓ + δu
dt, (2)

represents the predictable loss, i.e. losses
due to arbitrages made available between
the liquidity range quoted in the pool by
the LP and other trading venues due to
the latency between the time of variation

in the exchange rate on other markets and
the time of update of liquidity provision by
the LP in the liquidity pool, known as loss
versus rebalancing (LVR).
On the other hand, due to the observability
of the drift component, the LP can skew the
liquidity provision range upward or down-
ward according to whether µt is positive or
negative respectively in order to capture a
larger share of fee revenues (see the next
Section “Fee Revenue”).
Hence, the LP faces a trade-off between
a drift-based strategic positioning and a
drag component scaling in time like the
variance of the exchange rate caused by ar-
bitrages.

Fee Revenue

The dynamics of pt expresses how the fee
generation process, adjusted for spread and
concentration risk, accrues over time, hence
is given by:

dpt =
4

δℓ + δu
πt x̃t dt − γ

(
1

δℓ + δu

)2

x̃t dt,

(3)
where:

• δℓ + δu = δt: the total spread of the
liquidity position.

• πt: the pool’s fee rate, i.e. the rate
of fees generated instantaneously by
transactions executed in the pool.

• γ > 0: the concentration cost param-
eter, i.e an instantaneous (constant)
friction coefficient penalizing the over-
all profitability of the LP activity ac-
cording to the squared inverse of the
liquidity range length.

As shown in (3), the fee revenue dynamics
is made up of two distinct additive compo-
nents:

• Fee Revenue:

4
δℓ + δu

πt x̃t dt.
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This term captures the proportional
relationship between the LP’s position
size and the pool’s profitability rate
πt. Narrower spreads (δt) yield higher
fee income per trade.

• Concentration Risk Penalty:

−γ

(
1

δℓ + δu

)2

x̃t dt.

This term accounts for the risk of
the marginal rate Zt exiting the LP’s
liquidity range, reducing the effec-
tiveness of fee collection for smaller
spreads.

Hence, similarly to the position value, the
fee revenue captures a trade-off, namely the
trade-off between profitability coming from
the liquidity provision activity and concen-
tration cost: the narrower the length of the
liquidity range δt = δl

t + δu
t , the higher the

fee rate captured by the LP in the range
(δl

t, δu
t ] but the higher cost-opportunity com-

ing from quoting in a narrower range.

Rebalancing Cost

Finally, ct, represents the rebalancing costs
incurred by the LP as they adjust their liq-
uidity position. Such costs are proportional
to the holdings of asset Y that need adjust-
ment and are given by:

dct = −ζ · δu

δℓ + δu
x̃t dt, (4)

where:

• ζ: a constant representing the propor-
tional execution cost associated with
rebalancing the liquidity position.

Optimal Liquidity Strategy

At this point, we introduce the position
asymmetry function:

ρt =
δu

t

δl
t + δu

t
, (5)

which measures how much the position is
skewed, i.e. how much the current spot
Zt is not equidistant from the boundaries
(Zl

t, Zu
t ]. In particular we have that:

• If ρ = 1
2 the range is perfectly cen-

tered;

• If ρ → 0 then δu
t → 0, hence Zu

t → Zt:
only token1 is offered in the position
(Zl

t, Zu
t ];

• If ρ → 1 then δl
t → 0, hence Zl

t → Zt:
only token0 is offered in the position
(Zl

t, Zu
t ].

The author of [3] assume that:

ρt = ρ(δt, µt) =
1
2
+

µt

δt
=

1
2
+

µt

δl
t + δu

t
,

∀t ∈ [0, T].
(6)

In order to gain fees from the liquidity pro-
vision activity, the LP must keep the pro-
vided liquidity active, i.e. within a range
enclosing the current spot price Zt. Hence:

• If µt > 0 the spot tends to move to-
wards Zu

t and the LP adjusts the liq-
uidity range to the right;

• If µt < 0 the spot tends to move to-
wards Zl

t and the LP adjusts the liq-
uidity range to the left.

The LP wants to optimize the final expected
log-utility of its capital locked into the pool.
It can be proved that, assuming expression
(6) for the asymmetry function, the final
expected log-utility problem can be formu-
lated with just one control variable, given
by the liquidity provision range length δt.
Moreover, we need to assume that the asym-
metry function is square-integrable and this
entails that δs must be such that:

At =

{
δs : [t, T] → R : δs is Ft − adapted,∫ T

t
δ−4

s ds < ∞ P − a.s.
}

.
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FIGURE 1: Total Fees (upper-left), losses-vs-rebalancing (LVR, upper-rigth), absolute impermanent losses
(bottom-left) and total P&L (bottom-right).

Hence, under the square-integrability as-
sumption of the asymmetry function and
assuming the following profitability condi-
tion:

πt ≥ ηt =
σ2

8
− µt

4

(
µt −

σ2

2

)
,

the stochastic dynamic control problem can
be formulated as:

sup
δ∈At

uδ(t, x̃, z, π, µ) = Et,x̃,z,π,µ
[

log(xδ
T)
]
.

(7)
Under the previous assumptions, the re-
sulting Hamilton-Jacobi-Bellman equations
have a unique solution optimal spread
given by:

δ∗ =
2γ + µ2σ2

4π − σ2

2 + µ
(

µ − σ2

2

) . (8)

Once the trading frequency has been de-
cided, the strategy consists in rebalancing
the liquidity around the bounds defined by

(1), with δu and δl defined by:

δl = δ∗/2 − µt,

δu = δ∗/2 + µt.
(9)

It can be seen that the optimal range is
strictly increasing in the volatility of the
spot rate, so that the agent widens her liq-
uidity bounds in highly volatile scenarios,
to avoid the possibility of being left with
inactive liquidity between the rebalancing
times.
A higher fee rate, on the other hand, en-
courages the agent to narrow her position,
in order to capture a larger portion of the
trading fees.

Simulation Results

We assessed the performance of the afore-
mentioned strategy over a set of 1000 simu-
lations of the spot exchange rate dynamics.
We simulated a WETH-USDT pool assum-
ing:
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FIGURE 2: Liquidity (left) vs active liquidity (right).

FIGURE 3: Simulated Sharpe Ratio of the Optimal LP (left) vs simulated Sharpe Ratio of the Spot-Tracking
LP (right).

• A realistic level of volume/day (∼ 20
MIO);

• Gas fees at 25 USDT/transaction;

• 1 block added every ∼ 14 seconds;

• Arbitrageurs taking arbitrage op-
portunities across the simulated
WETH/USDT DEX and the corre-
sponding CEX.

The CEX spot exchange drift and the volatil-
ity coefficients are set to µ = 50% and
σ = 50% (1:1 Sharpe Ratio of the Buy-and-
Hold strategy assuming no risk-free rate).
We tested the optimal AMM strategy out-
lined versus a simple Spot-Tracking strat-
egy, keeping a liquidity provision range cen-
tered a +/-5% of the current spot price and
adjusting it whenever the DEX spot price

go out of such the corresponding bound-
aries. Both strategies were implemented
with daily monitoring (i.e. at most 1 ad-
justment/day). Finally, we assumed the fee
rate to be a martingale. Analyzing fig.(1),
we notice that the Optimal Strategy is much
more reactive than the Spot-Tracking one,
being dependent also on the estimated fee
rate. In facts, the absolute impermanent
loss, defined as the difference between the
capital value locked in the pool at time t
and the capital value locked in the pool
at the time of the last rebalancing t − ∆t,
where ∆t is the rebalancing frequency (1
day in this case), is expected to be close to
0 at the rebalancing time whereas the spot-
tracking case shows a clear negative drift,
sign of a much lower probability of adjust-
ing the liquidity at the rebalancing time.
Moreover, analyzing the expected liquid-
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FIGURE 4: Total Fees (upper-left), losses-vs-rebalancing (LVR, upper-right), absolute impermanent losses
(bottom-lefy) and total P&L (bottom-right) of the backtested strategies.

ity and active liquidity (i.e. the portion
of liquidity provided in a range includ-
ing the spot, hence available for swap at
time t, fig.(2)), it is clear why total fees and
losses vs rebalancing are 2 order of magni-
tude lower for the Optimal LP vs the Spot-
Tracking LP: liquidity and active liquidity
show the same ratio approximately.
Finally, what said about the absolute imper-
manent losses is confirmed: the Optimal
Strategy keeps all its expected liquidity ac-
tive through the whole period, whereas the
Spot-Tracking strategy has active just a por-
tion of the provided liquidity.
Analyzing the cumulated expected PnL (in
base 100), the two strategies look equivalent:
both the expected PnL and the confidence
interval bounds almost overlap. Also the
Sharpe Ratios look similar: noisy in both
cases and averaging 0 in time.
Finally, we stress the fact that the overall
profitability is sensitive to the assumptions
made about the data generating process of
the daily transactions, which determinate
volumes, the level of gas fees and the initial

amount of capital allocated to the pool: in
other simulations with lower volumes and
lower initial capital profitability decreases
(not reported here).

Backtest and Live Results

We performed backtests on historical spot
exchange rate. In this case we tested the
Optimal LP versus both the Spot-tracking
LP and the Static LP (i.e. a LP that simply
put liquidity at the start period and doesn’t
adjust the liquidity range).
We estimated the drift parameter by a 20-
day simple moving average and the volatil-
ity parameter by 20-day rolling standard
deviation of the log-returns of the spot. The
evidence (see fig. (4)) follows:

• LVR overcome Total fees;

• Active liquidity is heavily clustered:
after the cluster at the start of the
backtest period, the optimal strategy
according to (8) is not to take part into
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liquidity provisioning activities since
the profitability condition is not met;

• The total PnL is negative and follows
a path similar to the spot: this is ex-
plained by the fact that for most of the
time the liquidity is inactive and so
the PnL is mostly driven by the cap-
ital loss due to the spot decline and
not by fees, which is actually the eco-
nomic reason to provide liquidity in
a DEX.

Similar results were obtained in other time
windows.
Finally, as far as the live test is concerned,
our partner Nuant A.G. deployed a smart
contract tracking faithfully the performance
of the mono-pool strategy starting from
October 1st on the UniswapV4 blockchain.
The strategy is not profitable so far (see fig.
5).

Optimal Liquidity Provision:
Case of Multiple Pools

Multiple Spot Exchange Rate Dynamics

Let’s extend the analysis to the case of mul-
tiple exchange rates available.
Let Wt a d-dimensional standard Wiener
process and (Ω,F , P, {Ft}t≥0) the filtered
space such that {Ft}t≥0 is the natural fil-
tration of Wt. Let Zt be a d-dimensional
Ito process representing the exchange rate
of a set of n tokens, hereafter tokeni, ∀i ∈
{1, 2, ..., n} with respect to another reference
token, hereafter referenced as token0 and
let:

dZt = µIZtdt + σIZtdWt, (10)

where µ ∈ Rn is the vector of real coeffi-
cients, σ ∈ Mn×n(R) is a matrix such that
Σ := σσT is a positive definite matrix and
I ∈ Mn×n the n × n identity matrix, be the
stochastic differential equation describing
the dynamics of Xt. This entails the follow-
ing dynamics of log-returns {Xt}t≥0:

dXt =

(
µ − 1

2
ψ

)
dt + σdWt, (11)

where:
ψ := diag(Σ), (12)

given diag : MR(n×n) → Rn the operator
which yields the main diagonal of a matrix.
By integrating eq. (11) in an interval [0, t]
we have that:

Xt = X0 +

(
µ − 1

2
ψ

)
t + σWt. (13)

Hence:

Var(Xt) =σVar(Wt)σ
T = σ(I t)σT

=σσTt = Σt,
(14)

where I ∈ Mn×n(R) is the n × n identity
matrix.

Reformulation in the Principal Compo-
nent Space...

Since Σ is a positive definite matrix by con-
struction there exist Λ, V ∈ Mn×n(R) ma-
trix of eigenvalues and eigenvectors of Σ
such that:

Σ = VΛVT = V
√

Λ
√

ΛVT. (15)

Recalling that, by definition, Σ = σσT, it
follows that:

σ = V
√

Λ. (16)

Moreover, since
√

Λ =
(√

Λ
)T:

σ = V
√

Λ =
(√

Λ
)TVT =

√
ΛVT. (17)

Hence, we can apply a suitable rotation to
the original process of log-returns Xt and
obtain a process X̃t such that:

X̃t = VTXt

= VT
(

µ − 1
2

ψ

)
dt + VTV

√
ΛdWt

=

(
µ̃ − 1

2
ψ̃

)
dt +

√
ΛdWt,

(18)

where:
µ̃ := VTµ, (19)
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FIGURE 5: Transactions performed by the Smart Contract deployed by Nuant A.G. on UniswapV4 tracking
the optimal strategy.

and:

ψ̃ := VTdiag(Σ) = VTdiag(VΛVT). (20)

This paves the way leading to the possi-
bility to recover the 1-dimensional optimal
liquidity-providing strategy independently
for each exchange rate by simply rotating
the original log-return process Xt to obtain
the process X̂t representing the log-returns
in an underlying-risk-factor space.
This is due to the fact that the optimal strat-
egy developed in [3] is determined by max-
imizing an expected value and, hence, it is
agnostic of the precise path followed by the
driving process (either the original Wiener
process Wt or its rotation Ŵt = VTWt). Let
the value process of the agent’s portfolio at
time t:

V(t, Xt) :=
n

∑
i=1

zi(t)x̃i(t), (21)

where x̃i(t) is the value process of the
agent’s wealth locked into a fictious liquid-
ity pool exchanging the i-th underlying risk

factor vs token0:

dx̃i(t) = x̃i(t)

(
1

δ̃l
t,i + δ̃u

t,i

)
·
[(

4π̃t,i −
ψ̃i

2
+ µ̃i δ̃

u
t,i

)
dt +

√
λi δ̃

u
t,idWt

]

− γi

(
1

δ̃l
t,i + δ̃u

t,i

)2

x̃i(t) dt,

(22)
where π̃t,i and γ̃i represent the fee rate and
the concentration cost parameter for the ex-
change rate of the i-th underlying risk factor
vs token0, analogous to those defined in [3]
for the exchange rate of tokeni vs token0,
∀i ∈ {1, 2, ..., n}: the formers will be esti-
mated conditioned to the latters as it will
be explained in the next paragraph.
Now, by Ito’s lemma, it follows that the log-
wealth-process locked in the LP for the i-th
underlying risk factor is given by:

d log x̃t,i =
1

x̃t,i
dx̃t,i −

1
2x̃2

t,i
d⟨x̃t,i⟩2

t

=

(
1

δ̃l
t,i + δ̃u

t,i

)[
4π̃t,i −

ψ̃i

2
+

(
δ̃u

t,i

δ̃l
t,i + δ̃u

t,i

)
ψ̃i

2

]
dt

−
(

1
δ̃l

t,i + δ̃u
t,i

)[(
γ̃i +

λi

2
(δ̃u

t,i)
2
)(

1
δ̃l

t,i + δ̃u
t,i

)]
dt

+

(
δ̃u

t,i

δ̃l
t,i + δ̃u

t,i

)[(
µ̃i −

1
2

ψ̃i

)
dt +

√
λi dWt

]

= c̃i(π̃t,i) +

(
δ̃u

t,i

δ̃l
t,i + δ̃u

t,i

)
dX̃t,

∀i ∈ {1, 2, . . . , n}.

Note that δ̃u
t,i and δ̃l

t,i are a function of the fee
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rate π̃t,i (see eq. 27 in [3]) and term c̃i(πt,i)

in turn depends on them, other than µ̃i, ψ̃i
λi and γ̃i: the latter are assumed to be con-
stant, hence the notation c̃i(π̃t,i).
In vector notation, let dX̃t := [d log x̃t,i]

n
i=1:

dX̃t = c̃(π̃t) + ∆̃u
t dX̃t, (23)

with ∆̃u
t ∈ MR(n × n) diagonal matrix con-

taining the sequence
{

δ̃u
t,i

δ̃l
t,i+δ̃u

t,i

}n

i=1
on the

main diagonal, π̃t ∈ Rn vector of the fee
rates {π̃t,i}n

i=1 and c̃(π̃t) ∈ Rn containing
the sequence {c̃i(πt,i)}n

i=1.
Note that the fee rates π̃t and the concen-
tration cost parameters γ̃ of the pools in
the fundamental risk factor space are un-
observable. However, as it will be made
clear, we will assume that they depend ex-
clusively on the fee rate πt in the real asset
space. Moreover, the strategy is specified
in terms of the liquidity provision policy(
δ̃u

t , δ̃u
t
)
, which should dictate the policy in

the asset space.
Hence, define the conditional expectation
with respect to the σ-algebra generated by
the fee rate as estimator of the future ex-
pected returns π̃t, that is:

p̃ := E[dX̃t|π̃t]. (24)

Now, let:

µ p̃ := E[ p̃] =
[

E[c̃(π̃t)] + ∆̃u
t

(
µ̃ − 1

2
ψ̃

)]
dt,

(25)
and:

Σ p̃ := Var( p̃) =
(
∆̃u

t
)2Λdt. (26)

Since δ̃l
t and δ̃u

t are also a function of the
vector of the fee rates π̃t (see eq. (9)), we
have that2:

p̃ ∼ N (µ p̃, Σ p̃). (27)

...and Back into the Asset Space

The linearity of both the conditional ex-
pectation and transformation between the
underlying risk factor space and the asset
space causes the conditional expectation of
the log-wealth process in the asset space to
be straightforward:

p := E[dXt|π̃t] = E[VTdX̃t|π̃t]. (28)

Hence, it’s mean and covariance matrix are
respectively:

µp := E[p] =

=

[
E[VT c̃(π̃t)] + ∆̃u

t

(
µ − 1

2
ψ

)]
dt,

and:

Σp := Var(p) = (∆̃u
t )

2Σdt. (29)

We stress that the latter passage is of
paramount importance, since the alloca-
tion can be made just selecting weights ex-
pressed as percentage of the total wealth
available to the LP in the numéraire asset
(i.e. in the asset space, other than in the
underlying risk factor space): this will be
clear in the next section “Agnostic Risk Par-
ity Portfolio”.
At this point, we need to estimate the un-
observable parameters π̃t and γ̃ and the
optimal policy in the asset space. As said
before, we assume that the fee rate in the
fictious pool of the i-th risk factor π̃i,t de-
pends just on the fee rate vector π, hence
the sigma-algebra generated by π̃ is equal
to the σ-algebra generated by π. Moreover:

p = VT p̃. (30)

Hence, it must hold that:
E[p|π̃t] = E[VT p̃|π̃t]

= E[VT p̃|πt] = E[p|πt],

Var[p|π̃t] = Var[VT p̃|π̃t] = Var[VT p̃|πt]

= Var[p|πt].
(31)

2We assumed a Gaussian driving process. The same would happen in case of any elliptically distributed
driving process.
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In our implementation of the optimal strat-
egy described in [3], the fee rate π̃t,i is esti-
mated pathwise. Hence, a reasonable way
to estimate the unobservable parameters
and establish the dependence of the optimal
allocation policy in the asset space

(
δl

t, δu
t
)

from the optimal allocation policy in the
fundamental risk factor space

(
δ̃l

t, δ̃u
t
)

is to
find out the expression of the right hand-
side of eqq. (31) and solve the non-linear
system for (π̃t, γ̃, δ). Analogously to the 1-
dimensional case, it shall be noted that the
wealth process in the asset space is given
by:

dxi(t) = xi(t)

(
1

δl
t,i + δu

t,i

)

·
[(

4πt,i −
ψi
2

+ µiδ
u
t,i

)
dt + δu

t,iσ
TdWt

]

− γi

(
1

δl
t,i + δu

t,i

)2

xi(t)dt,

which implies that the log-wealth process
is given by:

d log xt,i =
1

xt,i
dxt,i −

1
2x2

t,i
d < xt,i >

2
t

=

(
1

δl
t,i + δu

t,i

)[
4πt,i −

ψi

2
+

(
δu

t,i

δl
t,i + δu

t,i

)
ψi

2

]
dt

−
(

1
δl

t,i + δu
t,i

)[(
γi +

ψi

2
(δu

t,i)
2
)(

1
δl

t,i + δu
t,i

)]
dt

+

(
δu

t,i

δl
t,i + δu

t,i

)[(
µi −

1
2

ψi

)
dt + σT

i dWt

]

= ci(πt,i) +

(
δu

t,i

δl
t,i + δu

t,i

)
dXt

∀i ∈ {1, 2, ...n}.

In vector form:

dXt = c(πt) + ∆u
t dXt. (32)

Hence:

E[p|πt] = c(πt) + ∆u
t

(
µ − 1

2
ψ

)
dt, (33)

Var[p|πt] = (∆u
t )

2Σdt. (34)

Remembering eq. [8]

δ̃∗i =
2γ̃i + µ2

i ψ̃2
i

4π̃ − ψ̃2
i

2 + µ̃i

(
µ̃i −

ψ̃2
i

2

) , (35)

and eqq. [9]:

δ̃u
i =

δ̃∗i
2
+ µ̃i,

δl
i =

δ∗i
2
− µi.

(36)

Plugging eqq. (35) and (36) into the left
hand-side of eq. (31) and eqq. (9), (33) and
(34) into the right hand-side of eq. (31),
we get a system on n equations depend-
ing on (π̃, γ̃, δ). Hence, the optimal pol-
icy can be found by solving a system of
non-linear equations imposing the follow-
ing constraints, which guarantee the prof-
itability of the solution in the asset space:

δi ∈ (0, 4) ∀i ∈ {1, 2, ..., n},

γ̃i > 0 ∀i ∈ {1, 2, ..., n}.
(37)

Finally, in order to choose a set {zi(t)}n
i=1

of optimal weights at time3 t, the Agnostic
Risk-Parity Portfolio can be adopted.

Agnostic Risk Parity Portfolio

At this point, we aim at treating each imple-
mentation of the optimal LP strategy dis-
cussed in sec. “Optimal Liquidity Provision:
Case of Single Pool” as a synthetic asset in a
portfolio optimization framework. In partic-
ular, we want to adjust the overall portfolio
exposure of the LP in a way such that:

• The Optimal Liquidity Provision strat-
egy is performed on each pool;

• The execution is coherent with a no-
tion of optimal portfolio allocation to
be chosen.

We evaluated a certain number of differ-
ent methods (see Annex for a brief review).
Typically, in any portfolio allocation prob-
lem, an investor aims at minimizing its risk

3Note that, given the current setting (constant µ and σ) such weights would be time-independent.
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under some constraint on expected returns,
implying the need for the solution of a
Markowitz(-like) optimal portfolio alloca-
tion problem. Some issues eventually arise
in such cases:

• Usually, risk is measured by the mean
of the standard deviation of the port-
folio, depending on the covariance
matrix. In such cases, the risk min-
imization approach leads to a con-
centration risk, arising from the fact
that weights tend to be higher along
the eigenvectors of the covariance ma-
trix whose associated eigenvalues are
lower.

• Parameter estimation uncertainty,
arising from the intrinsic non-
stationarity of financial time-series (at
least unconditionally from the past
state). It makes statistical estimators
of expected returns and covariance
matrices very uncertain.

The combination of both of the above issues
often leads to poor out-of-sample perfor-
mance of such portfolios.
To cope with the excessive concentration
issue, Risk-Budgeting-constraint on asset
holdings other that "underlying risk factor"
holding have been proposed in literature
(see Annex): if the first one actually doesn’t
diversify risk properly since it doesn’t take
into account asset correlations in the con-
straints, the second one usually leads to
risk factors whose statistics differ a lot from
the statistics of the individual assets, conse-
quently implying portfolio allocations lack-
ing of "financial soundness". Moreover, the
difficulty in obtaining reliable estimations
of the relevant parameters (i.e. expected
values and covariance matrices) reverberate
in the estimation of eigenvalues and eigen-
vectors, above all for smaller eigenvalues.
Those issues are efficiently dealt with by the
Agnostic Risk Parity approach [1], briefly
described hereafter.
The target is to obtain a method which:

1. Minimizes a certain distance between

the risk factors in the "asset space"
and the risk factors in the "spectral
space";

2. Minimizes the bias due to uncertainty
in parameter estimation, due to intrin-
sic non-stationarity of asset price and,
consequently, return time-series.

Hence, let r ∈ Rn the standardized (i.e. de-
meaned and rescaled to unit variance) re-
turns of each strategy over a time interval
∆t and let Σstd ∈ MR(n× n) be their covari-
ance matrix. Note that, since the returns
are standardized, such matrix is actually a
correlation matrix.
Moreover, let the vector of a (possibly bi-
ased) estimator of standardized expected
returns p ∈ Rn arbitrarily chosen and let
C ∈ MR(n × n) an estimation of their co-
variance matrix, {γi}n

i=1 ⊂ R and {u}n
i=1 ∈

Rn being the related sequences of eigenvec-
tors and eigenvalues, respectively.
As far as the first point is concerned, we
aim at a representation of true returns and
expected returns r̂ and p̂ respectively such
that their Mahalanobis distance from their
"asset space" counterpart r and p respec-
tively is minimized, that is:

argmin
M∈MR(n×n) : MMT=I

E
[
(â(M)− r)T

K−1(â(M)− r)
]
= I,

(38)
with â(M) = MΣ−1

std a, ∀a ∈ {r, p}, ∀K ∈
{Σstd, C}.
In [1] (Annex), it is shown that the solution
to the aforementioned problem is given by
the identity matrix I ∈ R(n × n). Accord-
ingly, the following rotations of r and p are
performed:

r̂ = Σ−1/2
std r, (39)

where:

Σ−1/2
std :=

n

∑
i=1

1√
λstd

i

vstd
i (vstd

i )T. (40)

{λstd
i }n

i=1 with {vstd
i }n

i=1 ⊂ Rn components
of the matrix Vstd ∈ MR(n × n) of the (or-
thogonal) eigenvectors of Σstd.
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Analogously, for vector p:

p̂ = C−1/2 p, (41)

C−1/2 :=
n

∑
i=1

1√
γi

hihT
i , (42)

with {hi}n
i=1 ⊂ Rn components of the ma-

trix H ∈ MR(n × n) of the (orthogonal)
eigenvectors of C.
Now, define the portfolio:

g := ω < r̂, p̂ >= ωr̂T p̂ =< π̂, r̂ >, (43)

where ω ∈ R+ is a suitable normaliza-
tion factor and π̂ := ω p̂ are the portfolio
weights.
Now, let gi := πi r̂i = ω p̂i r̂i. This portfolio,
depending on the expected returns of the
underlying risk factors r̂, has the following
desirable features:

• E[g2
i ] = 1 ∀i, j ∈ {1, 2, ..., n} : i ̸=

j ∀i, j ∈ {1, 2, ..., n} : i = j (unitary
risk associated to each underlying risk
factor);

• E[gigj] = 0 ∀i, j ∈ {1, 2, ..., n} : i ̸= j
(uncorrelation);

• gR :=< R(r),R(p) >= rTRTRp =

rT p (rotation invariance).

Where R ∈ MR(n × n) is the rotation ma-
trix representing the rotation operator R.
In particular, unitary risk associated to each
risk factor and null correlation define the
scale invariance property, which is impor-
tant in order to let all the assets be com-
parable, no matter the scale of each one.
Moreover, the rotation invariance implies
that rotation leads to the same portfolio ex-
pected return, no matter.
By substituting eq. (41) and (39) into eq.
(43) we obtain:

g = ω < C−1/2 p, Σ−1/2
std r >

= ωpT(C−1/2)TΣ−1/2
std r

= πTr =< π, r >,

where:

π := ωpT(C−1/2)TΣ−1/2
std = ω(Σ−1/2

std )TC−1/2 p.
(44)

Such portfolio is defined Eigenrisk-Parity
Portfolio. In facts, let the second order mo-
ment of π:

Var[π · √γivstd
i ] = E[(π · vstd

i )2]γi

= ω2
(

1√
γi

)2

E[(vstd
i · C−1/2 p)2]γi

= ω2

∀i ∈ {1, 2, ..., n}.

That is, the variability is the same for
all directions (eigenvectors) in which risks
spread out. Moreover, by avoiding to tar-
get minimum variance, it effectively tackles
the issue of over-allocation to small eigen-
modes, whose estimation is usually quite
unstable. It rather aims at an "Occam razor"
allocation, i.e. relying on a minimum infor-
mation set and (implicit or explicit) assump-
tions about the data generating process of
both realized asset returns and expected as-
set returns.
In particular, it is referred to as Agnostic
Risk-Parity portfolio in case no particular re-
lationship is supposed among expected re-
turn estimators, i.e. in case C := I. Hence,
the Agnostic Risk-Parity portfolio is given
by:

πARP := ωΣ−1/2
std p. (45)

Instead, in case C := Σstd and ω = 1
1TΣ−1

std w
we recover the Markowitz optimal portfolio
(48).
In order obtain an unbiased estimation of
the covariance matrix, the authors of [1] sug-
gest to use the Rotation Invariant Estimator
introduced in [2]: as the name suggests, it is
invariant under (random) variations of the
eigen-directions of the rotation represented
by the eigenvector matrix of the covariance
matrix.
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The Strategy

Hence, a possible algorithm follows:

• At time t0 = 0:

1. Estimate the vector of means and
the covariance matrix. For an
efficient estimator of the covari-
ance matrix one can resort to
the Rotational Invariant Estima-
tor (see [[2]]).

2. Recast the optimal allocation
problem by representing the log-
returns of the spot exchange
rates Xt in the "underlying risk
factor" space as done in eq. (18)
and obtain the wealth process in
eq. (22).

3. Select a rebalancing frequency
∆t and, hence, a time-grid
{ti}n

i=1 such that tk = k∆t ∀k ∈
{1, 2, ..., n}.

• At each time-step tn:

1. Find out the optimal strategy as
prescribed by [3] for each (inde-
pendent) underlying risk factor.

2. Solve the non-linear system of
eq. (31) and find out the optimal
policy δ∗ to be executed in each
real pool.

3. Update the vector of expected
returns and rebalance the expo-
sures to each real liquidity pool
according to the Agnostic Risk
Parity portfolio weights.

4. Execute the optimal liquidity
provision strategy in each real
liquidity pool.

Conclusions

In this paper we dealt with optimal liquid-
ity provision strategies in crypto-currency
Decentralized Exchanges (DEXs) working
on the UniswapV3 protocol. We outlined
the optimal liquidity strategy proposed in

[3] and we assessed its performance both
in a simulated WETH-USDC pool and in
a backtesting framework. We found out
that the strategy did not perform better
than some simpler liquidity provision strat-
egy, namely the spot-tracking LP strategy
and, in the backtest case, the static LP strat-
egy. Hence, we went on proposing an ex-
tension to a multi-pool setting: the liquid-
ity provider wants to allocate its capital
optimally across more than one exchange.
Exploiting the spectral properties of the
Wiener process, we recovered the possibility
to use the optimal single-pool strategy ac-
cording some optimality conditions about
the overall capital allocation. The imple-
mentation and assessment of the perfor-
mance will be carried out in a future work.
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Annex

Mean-Variance Portfolio Optimization

The most famous portfolio optimization framework was proposed, in 1952, by Harry
Markowitz [6], earning him the Nobel Price in Economics in 1990: the so-called Mean-
Variance Optimal Portfolio is supposed to be the one that minimizes the overall portfolio
variance under a minimum expected return requirement µ∗ ∈ R and the so-called full-
invested constraint, requiring that all the capital is invested in the available universe of
assets. In formulas:

min
w

Varpt f (w) := wTΣw

s.t.
wTµ ≥ µ∗

wT1 = 1.

(46)

Equivalently, the problem can be reformulated in terms of maximum Sharpe Ratio (SR)
under full-invested constraint:

max
w

SRpt f (w) := wTµ√
wTΣw

s.t.
wT1 = 1.

(47)

The solution exists in closed form and is given by:

w∗
MVO =

Σ−1µ

1TΣ−1µ
. (48)

In case of absence of minimum expected return constraint in (46), the Markowitz optimal
portfolio is referred to as the Global Minimum Variance (GMV) portfolio. The solution is
given by:

w∗
GMV =

Σ−11
1TΣ−11

. (49)

Portfolios of Markowitz-type (either MSR or GMV) resort to a principle of minimum
variance. Hence, they lead to portfolios which are very concentrated in the lowest variance
asset. This is even more evident if we recast the problem in the underlying risk factor
space, that is, formulating the problem with respect to the principal components of the
covariance matrix other than the physical asset space. By substituting eq. (15) into the
objective function in eq. (46) and defining w := Vx we obtain:

min
w

Varpt f (w) := wTΛw

s.t.
wTµ ≥ µ∗

wT1 = 1.

(50)

In order to attain the minimum possible variance, it is clear that the weights will be higher
for the principal component with lower eigenvalues, exposing the portfolio to a material
concentration risk. Indeed, this would be optimal under the assumption that the investor
is able to estimate accurately the covariance matrix Σ and the expected return vector µ.
However, this is usually very difficult when dealing with returns of financial assets, often
suffering from lack of stationarity or even ergodicity. Hence, the lack of reliable estimators
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for covariance matrices and expected returns causes the over-allocation to a lower-variance
asset a drawback of Markowitz-type optimal portfolios.
In order to deal with such drawbacks, a certain number of approaches have been proposed
in literature: most of them, aim at sorting out the concentration problem by increasing the
level of diversification of optimal portfolios by imposing so-called risk budget constraints
and/or exploiting rotation invariance properties of elliptical probability distributions (e.g.
recasting the problem in some equivalent space characterized by the spectral properties of
estimated covariance matrices, from now on called underlying risk factor space).
However, the latter fixes miss to deal with the main issue of Markowitz-type optimal
portfolios, that is, the intrinsic uncertainty in the estimation of expected returns and
covariances. A possible solution to this issue, along with some other drawbacks arising
in the latter alternative approaches, is proposed in [1] which will be described in the last
section (sec. “Max-Entropy”).

Risk-Budgeting and Risk-Parity

A suitable approach to increase the diversification of a Markowitz-type optimal portfolio is
the risk-budgeting approach, which consists in introducing a set of nonlinear constraints to
the Markowitz optimal portfolio such that the overall quote of variance of the portfolio that
should be allocated to a single asset in eq. (46) is fixed:

min
w

Varpt f (w) := wTΣw

s.t.
wTµ ≥ µ∗

Σw
wTΣw × w = b

wT1 = 1,

(51)

where the entries of b ∈ [0, 1]n represent the maximum portfolio variance fraction allowed
to the i-th un derlying risk factor (see [8], page 80 for the proof). In particular, when
b := 1 · 1

n , the risk-budgeting constraint is referred to in a self-explicable way: risk-parity
constraint. Such a problem is convex: although no closed-form solution is available, it is
solvable by mean of any numerical algorithm.
In particular, removing the minimum expected return required constraint and setting the
risk-parity constraint, lead to the following modification of the Global Minimum Variance
optimal portfolio problem (49):

min
w

Varpt f (w) := wTΣw

s.t.
Σw

wTΣw × w = 1 · 1
n

wT1 = 1.

(52)

However, the optimal solutions to the problem just introduced are specified in the asset
domain, that is, the optimal weights are set such that they satisfy a constraint expressed in
terms of variance of the single asset, without taking into account that correlations among
asset make drawdowns, due to a shock in the returns of one asset, propagate also to other
assets, hence not taking into account the underlying risk factors potentially driving more
than asset.
In order to cope with this issue, the same problem can be specified in the underlying risk
factor domain, analogously to what was done in (52) by imposing risk-parity constraints

Issue n. 30 / 2026 35



Argo Magazine

with respect to underlying risk factors:

min
w

Varpt f (ŵ) := ŵTΛŵ

s.t.
Λŵ

ŵTΛŵ × ŵ = 1 · 1
n

ŵT1 = 1.

(53)

Max-Entropy

The max-entropy approach tackles the problem of risk concentration differently from the
risk-budgeting approach: the diversification requirement is expressed by looking for the set
of weights of the different underlying risk factors that maximize an entropic measure.
First of all, we introduce the following entropic measures, known as Rényi entropies, to be
used as measures of portfolio diversification:

Eα(w) = ||w||
α

1−α
α =

(
N

∑
k=1

wα
k

) 1
1−α

,

α ≥ 0, α ̸= 1.

(54)

In particular, for α → 1, we recover the Shannon Entropy:

E1(w) = exp

(
−

N

∑
k=1

wk ln(wk)

)
, (55)

whereas, for α = 2:

E2(w) =
1

∑n
i=1 w2

k
. (56)

Such measures vary from 1 to n depending on whether the portfolio is fully invested in
one asset (i.e. ∃k ∈ {1, 2, ..., n} : wk = 1; wj = 0 ∀j ∈ {1, 2, ..., n} : j ̸= k ) or in all assets in
the same measure (i.e. wk =

1
n ∀k ∈ {1, 2, ..., n} ).

Then, let:
p(ŵ) := Λŵ × ŵ. (57)

Then, the optimum portfolio weights ŵ ∈ [0, 1]n are the weights solving the following
maximization problem:

max
ŵ

Eα(ŵ)

s.t.
ŵT1 = 1.

(58)

It can be shown that the max-entropy approach for α = 2 is equivalent to impose a shrinkage
to the covariance matrix in the Risk-Parity Global Minimum Variance optimal portfolio
problem (see Proposition 4 of [4]).
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Scenario generation is fundamental in financial risk management, enabling institutions to
explore possible market evolutions, assess portfolio resilience, and design stress test exercises.
Traditional approaches, such as historical simulation and Monte Carlo methods, are the go-to

solutions, with practitioners and modellers who found ways to manage the sometimes restrictive
assumptions and limitation which used to affect these approaches (e.g., heavy tails, volatility cluster-
ing, non-linear cross-asset dependencies, etc.).
Innovations in Machine Learning (ML), especially in the rapidly advancing field of Generative
Artificial Intelligence (GenAI), are introducing promising alternatives for market data augmentation
and synthetic scenario creation. Deep generative models, including Generative Adversarial Networks
(GANs), Variational Autoencoders (VAEs), and Gaussian Mixture Models (GMMs), can learn
non-linear dependencies and high-dimensional probability distributions directly from empirical data,
promising to move beyond traditional resampling methods.
We evaluated academia and industry literature, including the emerging research adapting Transformer-
like architectures (the basis of Large Language Models - LLMs) for integrating unstructured data
(e.g., news or sentiment) into conditional factor generation. By integrating insights and critically
comparing leading methodologies (VAE, GAN, GMM, and Transformers) across core metrics (e.g.,
interpretability, stability, data efficiency), this article wants to provide a practical overview to assess
whether AI (and in particular GenAI) can be really production-ready for financial institutions in
complement traditional approaches in market scenario generation and data augmentation.

Scenario generation is a crucial, broad-
spectrum component of risk manage-
ment and strategic decision-making

across the financial sector. Depending on
the institution — be it a bank, an insurance
firm, or an asset manager — and the spe-
cific use case, scenario modeling underpins
a diverse range of critical functions. Appli-
cations span, for example, Market, Credit,
and Solvency VaR, future exposure predic-
tion in Counterparty Credit Risk (CCR),
and forward-looking simulations of possi-
ble events for portfolio optimization. In-
dependently by the use case, it is always
important for financial institutions to rely
on trustable and sound data. In this re-
gards, generating plausible future evolu-
tions of key risk factors (e.g., interest rates,
stock prices, credit spreads, etc.) to as-
sess portfolio resilience and inform capi-
tal allocation decisions is the first goal to
be achieved. Secondly, an equally impor-
tant objective is to have sound data aug-
mentation techiques when needed. This in-
cludes reconstructing complete historical
datasets by filling missing data points (due
to non-quotations, trading suspensions, or
technical errors) and generating synthetic-

but-plausible historical paths. This aug-
mentation is especially critical for stabiliz-
ing risk metrics, like long-horizon Histor-
ical VaR, where native time series scarcity
compromises reliability. The foundational
"classic methods" to achieve these goals
are based on historical simulation and
Monte Carlo techniques. Widely used,
these methods have been long fine-tuned
and improved in the years to handle po-
tentially critical reliance on strong paramet-
ric assumptions (e.g., Gaussianity, stationar-
ity). Among the complexities to be handled,
we acknowledge critical market stylized
facts such as heavy tails, volatility clustering,
and complex, non-linear cross-asset depen-
dencies. These methodological challenges
highlighted the need for more adaptive and
data-driven frameworks. In the subsequent
sections, we introduce Generative AI-based
approaches as a complementary modern
solution for both scenario generation and
data augmentation. These methods, lever-
aging on architectures as Generative Ad-
versial Networks (GANs), Variational Au-
toEncoders (VAEs), and Gaussian Mixture
Models (GMMs), learn market distributions
directly from empirical data, trying to over-
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come some of the constraints of traditional
techniques. We will present the method-
ologies currently proposed in the literature,
discussing whether these AI-driven simu-
lations can offer realistic, diverse, adaptive,
and financially coherent solutions for risk
management.

Classic Methods and Their Limits

Traditional approaches to scenario genera-
tion rely on well-established statistical tech-
niques, primarily categorized into historical
and model-driven (Monte Carlo) simula-
tions. Foundational, they have been revised
by both the academia and the industry in
the past decades not to rely solely on too
simplified assumptions and not to fall short
to properly fit the modern, complex finan-
cial markets.

Historical Simulation

The historical simulation generates scenar-
ios by directly resampling from historical
time series, often adjusting for recent volatil-
ity using techniques like rescaling or nor-
malization. This approach is widely fa-
vored (e.g., classic Market Risk VaR used
in the banking sector) due to its method-
ological simplicity and its reliance on re-
alized data, sidestepping the need for ex-
plicit parametric modeling of risk factor
distributions. However, one limitation of
the standard historical simulation is its im-
plicit assumption of identically distributed
returns, which may fail to capture time-
varying volatility and clustering effects ob-
served in financial data. To address this, Fil-
tered Historical Simulation (FHS) has been
proposed as an enhancement by Barone-
Adesi and Giannopoulos (2001) [5]. In
FHS, returns are first filtered through a
volatility model (typically a GARCH-type
process), and the standardized residuals
are then resampled to generate new sce-
narios. The simulated returns are recon-
structed by reapplying the estimated condi-
tional volatility, allowing the model to ac-
count for recent changes in market dynam-

ics. Closely related is the work of Bonollo
et al. [7], who develop an enhanced risk
management framework based on the FHS
model. Their approach extends FHS-VaR to
produce scenario-based P&L distributions
over a one-year horizon, maintaining consis-
tency with underlying risk-factor dynamics
and annual realized volatilities via a boot-
strap procedure. By linking realized and
conditional volatility, the model achieves
proportional control over simulated returns,
enhancing responsiveness to market shocks
while improving backtesting performance
and capital efficiency under stress.

Model-Driven (Monte Carlo) Simulation

Monte Carlo simulation remains a foun-
dational quantitative tool, offering signif-
icant flexibility and robustness by simu-
lating a large number of potential mar-
ket paths. This is achieved by randomly
sampling from explicit stochastic processes
that model the time-evolution of financial
risk factors. Once a model (e.g., Black-
Scholes, Vasicek, GARCH, etc.) is specified,
Monte Carlo is adept at accommodating
complex dependencies, non-linear pay-offs,
and path-dependent derivative valuations.
This is the classic approach used in use case
as, for example, Counterparty Credit Risk met-
rics and Solvency II Internal Model’s SCR.

Systemic Limitations of Classical Model-
ing

While traditional models are indubitably
still the industry best practice, their practi-
cal utility can be compromised by their de-
pendence on simplifying assumptions that
clash with empirical market data. Among
these, we can acknowledge difficulties that
have been long studied as:

• Stylized Facts and Distributional
Shape: in most of their base settings,
classical methods impose assump-
tions as Gaussianity (normal returns)
and stationarity. This can lead to a
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FIGURE 6: Summary of the main limitations of traditional models in scenario generation.

systemic failure ([39]) to capture criti-
cal market characteristics that define
the empirical distribution shape, in-
cluding heavy tails and skewness (un-
derestimating extreme events), serial
and long-memory effects (autocorre-
lation), reliance on the i.i.d. bootstrap
assumption which is often fundamen-
tally violated in real data. Classical
approaches addressing these limita-
tions include the use of heavy-tailed
distributions, such as the Student-t
distribution [31], which better capture
the fat tails and excess kurtosis typ-
ically observed in financial returns.
Another widely adopted solution in-
volves copula models, which decou-
ple marginal distributions from their
dependence structure, enabling a flex-
ible modeling of nonlinear correla-
tions and tail dependencies across risk
factors [11, 22].

• Rare Event Modeling: due to
parametrization choices and calibra-

tion constraints, rare events (e.g.,
crises, sudden market shocks) could
be poorely represented. The probabil-
ities of such extreme movements can
be underestimated, leading to over-
confident risk estimates and fragile
stress tests. Among the methods used
to overcome such a problem, one of
the famously proposed solution en-
tails the Extreme Value Theory (EVT)
as discussed by Embrechts, Klüppel-
berg, and Mikosch (1997) [14] or Lon-
gin (2000) [29].

• Dependency and Scalability Chal-
lenges: models struggle with non-
linear and time-varying cross-asset
dependencies, resulting in oversim-
plified correlation structures. This is-
sue is compounded by the curse of
dimensionality, where modeling high-
dimensional, multi-factor dependen-
cies becomes computationally expen-
sive and statistically more complex. A
method highly discussed in literature
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and used in practice, from the bank-
ing to the insurance secotr, involves
the use of copulas, as it has been pro-
posed in works as Embrechts, McNeil
and Straumann (2002) [15] and De-
marta, McNeil (2005) [11].

• Data Integration and Out-of-Sample
Performance: classical statistical ap-
proaches are traditionally limited to
structured, tabular data, and mostly
unequipped to incorporate unstruc-
tured inputs like financial news or
sentiment. Indeed, integrating fi-
nancial news into market scenario
generation without AI primarily in-
volves leveraging traditional statis-
tical, econometric, and rule-based
methodologies. These approaches
focus on quantifying the impact of
news content and incorporating it
into models through historical correla-
tions, sentiment indices, or regression-
based techniques [2]. The funda-
mental challenge lies in systemati-
cally transforming unstructured tex-
tual information into structured data
that can feed into quantitative finan-
cial models. Furthermore, calibrat-
ing models on historical data and still
be able to generalize to new market
regimes has always been a genuinely
hard task.

The AI Paradigm: Data-Driven Modeling
for Finance

The modeling challenges classical ap-
proaches have been facing led both the
academia and the industry studying more
data-driven and adaptive frameworks. Ad-
vanced Machine Learning (ML) and Deep
Learning (DL) techniques started to pro-
liferate within the financial sector research
space, most often for business and manage-
rial risk management applications.
Traditional AI applications, such as credit
scoring or fraud detection, typically em-
ploy discriminative models, which learn
mappings from inputs to outputs by esti-

mating conditional probabilities P(Y | X).
For instance, a Random Forest classifier
distinguishes between “likely to default”
and “not likely to default,” while models
such as LSTMs (Long-Short Term Memo-
ries) are used for time-series forecasting.
Generative AI, by contrast, aims to model
the joint structure of the data itself (i.e.,
P(X)). Rather than predicting labels, it
learns to represent and reproduce the sta-
tistical regularities of observed financial
phenomena. This enables the synthesis of
new, realistic data samples and supports
applications such as scenario generation
and data augmentation. Prominent archi-
tectures adapted for such use cases in fi-
nance include Generative Adversarial Net-
works (GANs) [19], Variational Autoen-
coders (VAEs) [27], and Gaussian Mixture
Models (GMMs) [32].
Among these models, Generative Adversar-
ial Networks (GANs) learn to produce real-
istic synthetic data through the competition
between a generator and a discriminator
[19]. Their conditional variant, cGAN, en-
ables controlled scenario creation by condi-
tioning on specific variables such as volatil-
ity regimes or macro factors [34]. Similarly,
Variational Autoencoders (VAEs) generate
data by encoding and decoding through a
probabilistic latent space [27]; their condi-
tional form (CVAE) and temporal extension
(TimeVAE) allow for richer, time-dependent
representations of financial series.
Alongside these neural models, Gaussian
Mixture Models (GMMs) provide a clas-
sical probabilistic approach [37] and a
particularly interpretable and statistically
grounded framework. By expressing the
data distribution as a weighted sum of
Gaussian components, GMMs capture non-
linearities, skewness, and multi-modality
in empirical financial return distributions.
This flexibility makes them valuable for
modeling heterogeneous market regimes or
mixtures of volatility states. As discussed
by Brigo and Mercurio (2006) [8], mixture
models naturally extend classical paramet-
ric settings by combining multiple Gaussian
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FIGURE 7: Overview of different modern AI methodologies.

densities to approximate complex empiri-
cal distributions while preserving analyti-
cal tractability. Their use in finance ranges
from modeling implied volatility surfaces
and interest rate dynamics to generating
realistic risk-factor scenarios within a prob-
abilistic framework.
To address the sequential nature of market
data, Recurrent Neural Networks (RNNs)
and their improved version, the Long Short-
Term Memory (LSTM) network, capture
temporal dependencies for forecasting ap-
plications [23]. More recently, Transform-
ers, based on attention mechanisms [42]
rather than recurrence, have emerged as ef-
ficient architectures to try to model both
short- and long-range dependencies in time
series, as well as mean to encode automati-
cally unstructured data into scenario gener-
ation pipelines [12, 28, 3].
Together, these models form a methodolog-
ical spectrum: while GANs, VAEs, and
GMMs are mainly used for sampling real-
istic scenarios, LSTMs focus on forecasting

temporal dynamics, and Transformers are
better used to include unstructured data —
a distinction central to the framework de-
veloped in this study.
Operating without restrictive parametric
assumptions, AI (and particularly GenAI)
models promise to emulate historical price
dynamics, volatility clustering, and asset
interdependencies with high fidelity. By
capturing nonlinear relationships and cross-
sectional structures, they are proposed to
achieve a richer representation of stylized
facts — such as heavy tails, skewness, and
volatility clustering — while aiming at scal-
ing effectively to high-dimensional settings.
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TABLE 1: Classical limitation across classical financial modeling approaches and most Generative AI methods.

Challenges of Market Scenario
Generation

While both academia and industry are as-
sessing whether Generative AI can be a
complement (if not in some cases an alter-
native) to traditional financial modeling, its
application to market scenario generation
and data augmentation remains far from
straightforward. As such models gain atten-
tion for risk management and stress testing
use cases, it becomes essential to critically
assess their reliability, consistency, and the-
oretical validity within financial contexts.
Three broad areas of challenge emerge at
the intersection of finance and AI.

First, there is the challenge of intra-class
heterogeneity. Risk classes — such as equi-
ties, interest rates, etc. — are not monolithic.
Each is composed of multiple distinct risk
factor types governed by their own dynam-
ics, time scales, and statistical properties.
For example, within the single Equity class,
a model must simultaneously capture the
behavior of spot prices, dividend curves,
and implied volatility surfaces. Designing
neural architectures capable of jointly cap-
turing these diverse internal components
without loss of fidelity is a non-trivial task.
Second is the modeling of inter-class de-
pendencies. Financial markets are deeply
interconnected systems where shocks prop-
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FIGURE 8: The figure illustrates the three key challenges in applying Generative AI to financial scenario
generation. The first challenge is the modeling of multidimensional risk classes, such as spots, curves and
volatility surfaces. The second challenge concerns inter-class dependencies, such as the example shown between
government bond and equity returns during a ’flight-to-quality’ period, when prices of the latter goes down, in
favor of government bonds. The third and final challenge is the enforcement of financial consistency conditions
— e.g., absence of arbitrage opportunities.

agate across assets through non-linear and
time-varying channels. A shock to interest
rates, for instance, can cascade into equity
valuations and credit spreads. Generative
models must therefore go beyond marginal
accuracy (i.e., modeling each class in iso-
lation) to reproduce the complex web of
co-movements and contagion effects that
define real-world market behavior — espe-
cially under stress conditions.
Finally, the enforcement of financial con-
sistency, most notably the absence of arbi-
trage, represents a foundational constraint
often violated by unconstrained neural net-
works. Ensuring that generated scenarios
remain economically valid requires integrat-
ing domain knowledge, such as pricing re-
lationships and no-arbitrage principles, di-
rectly into model design or training objec-
tives.
In the following sections, we examine these
challenges in greater depth. We begin with
the problem of modeling multidimensional
risk classes, proceed to the representation

of inter-class dependencies, and conclude
with the mechanisms required to guarantee
arbitrage-free scenario generation.

Intra-Class Heterogeneity

Within each financial risk class lies a multi-
dimensional structure that generative mod-
els must reproduce accurately. Interest
rates, for instance, are represented through
curves across maturities; credit spreads
vary across tenors and counterparties; eq-
uity or FX markets are characterized by
both price levels and implied volatilities.
Each of these elements embodies a distinct
but interrelated risk dimension, driven by
different economic mechanisms and data
characteristics. Capturing their joint dy-
namics within a coherent framework is one
of the most demanding tasks in AI-based
scenario generation.
The challenge arises from the coexistence of
heterogeneous data types — scalar, vector,
and surface representations — each with
different statistical properties, time scales,
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and sensitivities. Traditional neural archi-
tectures are typically optimized for homo-
geneous inputs, yet financial data within a
single risk class can range from dense, high-
frequency time series (e.g., spot prices) to
sparse, structured surfaces (e.g., yield or
volatility curves). Ensuring that models
learn consistent patterns across these do-
mains without distorting their internal rela-
tionships is non-trivial.
A key risk in this setting is the loss of
internal coherence. For example, a gen-
erative model trained separately on yield
curves and volatility surfaces might repro-
duce each marginal distribution accurately
but fail to maintain the economic relation-
ships between them — such as the link be-
tween term-structure shifts and changes in
implied volatility. Similarly, naive training
may violate smoothness or monotonicity
constraints that are fundamental to finan-
cial realism.
Different architectures offer complementary
strengths, as it will be better explained in
the following section; for example:

• Variational Autoencoders (VAEs), which
can be viewed as the non-linear and
non-parametric extension (or competi-
tor) of Principal Component Analysis
(PCA), can encode multi-dimensional
structures into latent spaces that
preserve relationships among term-
structure, volatility, and liquidity fac-
tors, provided that the latent design
reflects the geometry of the underly-
ing data;

• Generative Adversarial Networks
(GANs) can simulate complex shapes
such as yield or volatility surfaces
but require careful regularization to
avoid mode collapse or unrealistic
discontinuities;

• Physics-informed or constraint-aware net-
works can embed structural priors
— such as no-arbitrage or curve-
smoothness conditions — directly
into the training objective, providing
a more financially consistent output.

Ultimately, effective multidimensional mod-
eling depends not only on data abundance
but also on accurate architectural alignment
with financial structure. Models must learn
the internal geometry of each risk class (i.e.,
how its factors evolve jointly and respect
financial constraints) before they can reli-
ably support scenario generation or pricing
applications.

Inter-Class Dependence

Beyond the internal consistency of each risk
class lies the broader challenge of capturing
dependencies among them. Financial mar-
kets operate as interconnected systems; e.g.,
movements in interest rates affect equity
valuations through discount factors; credit
spreads respond to both rates and macroe-
conomic stress; commodities influence in-
flation expectations, which in turn shape
monetary policy. These linkages evolve
dynamically and often strengthen under
stress, amplifying systemic risk.
A generative model must therefore go
beyond marginal (single-asset) accuracy
to reproduce this complex web of co-
movements, especially under stress condi-
tions where correlations often spike and
behave non-linearly. Standard correla-
tion or copula frameworks provide well-
established solutions, while deep genera-
tive models must infer such dependencies
implicitly from data. This creates recurring
potential problems as:

• Hidden vs. explicit correlation model-
ing: most generative models, particu-
larly deep learning architectures, do
not explicitly model correlation. In-
stead, they rely on the joint training of
data to implicitly learn dependencies,
which may lead to an under/over-
estimation of weak or nonlinear links.

• Overfitting to marginal structure: gen-
erative models often optimize for
marginal fidelity (e.g., minimizing re-
construction loss or adversarial diver-
gence), sometimes at the expense of
capturing joint behavior.
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TABLE 2: Main features of different asset classes.

TABLE 3: Examples of cross-asset dependencies observed in financial markets.

• Insensitivity to systemic events: rare but
crucial market regimes, such as coor-
dinated crashes or liquidity freezes,
are underrepresented in training data.

Without tailored mechanisms, mod-
els may fail to generalize correlation
behavior in stress conditions.
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TABLE 4: Two main paradigms of incorporating no-arbitrage into machine learning models.

FIGURE 9: Some AI models and their behavior with respect to the aforementioned challenges in scenario
generation.

Arbitrage-free Scenario

One of the core requirements in financial
modeling is the absence of arbitrage, the
impossibility of obtaining a riskless profit
with zero investment [45]. This principle
underlies derivative pricing, market equi-
librium, and risk management. Any re-
alistic scenario generation method must
therefore respect fundamental financial con-
straints such as no-arbitrage, pricing con-
sistency, and risk-neutral valuation. How-
ever, the growing use of machine learn-
ing, especially deep neural networks, intro-
duces challenges to these principles. Purely
data-driven models optimize statistical loss
functions without intrinsic awareness of fi-
nancial structure, and may thus generate
economically inconsistent scenarios, em-

bedding artificial arbitrage opportunities.
Typical examples include negative swap
spreads, unjustified yield-curve inversions,
or violations of put–call parity in option
pricing outcomes that, while statistically
plausible, are financially invalid. To miti-
gate such issues, the literature distinguishes
two main approaches. The first enforces
no-arbitrage by design, embedding financial
structure directly into the model or its loss
function. The second detects and corrects
violations ex-post, either through regulariza-
tion or post-processing adjustments. Both
paradigms aim to align data-driven mod-
els with the fundamental economic logic
required for credible financial scenario gen-
eration and data augmentation.
No-arbitrage by design approaches offer the
most principled path toward economically
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valid generative models. One strategy is
the development of ad hoc architectures,
where the model’s output space is con-
strained to only produce arbitrage-free out-
puts. A notable example of no-arbitrage by
design is provided by Ning et al. (2022) [36],
who propose a VAE framework specifically
tailored to generate arbitrage-free implied
volatility surfaces. An even more rigorous
variant of the by-design approach lever-
ages physics-informed neural networks
(PINNs), both methods will be discussed
deeply in the next chapter.
In contrast, pre/post fixing methods of-
fer more flexible but less theoretically elen-
gant solutions. Regularization-based tech-
niques add penalty terms to the train-
ing loss that softly discourage arbitrage.
For example, a term may penalize devia-
tions from put-call parity, or penalize op-
tion price surfaces that violate convexity
or monotonicity. These constraints act as
guardrails during training, encouraging the
model to stay close to the arbitrage-free
region of function space without impos-
ing hard constraints that might limit gen-
eralization. For instance, Hyndman (2021)
adopts a pre-fixing approach, embedding
arbitrage constraints directly into the train-
ing process through projection-based regu-
larization, thus ensuring yield curve fore-
casts remain economically consistent [25].
Conversely, Vuletić (2023) proposes Vol-
GAN, a post-fixing framework where a
generative adversarial network produces
implied volatility surfaces that are subse-
quently corrected via projection procedures
to remove butterfly and calendar arbitrage,
restoring arbitrage-freeness after generation
[43]. Both approaches will be discussed in
greater detail in the following section.
While these methods cannot eliminate all
arbitrage violations, they provide a practi-
cal balance when architectural constraints
or complex loss formulations are compu-
tationally infeasible. Each approach has
trade-offs: no-arbitrage architectures may
be overly restrictive in high-dimensional
settings, PINNs offer theoretical rigor but

high computational cost, and regulariza-
tion or post-processing methods are flexible
yet lack formal guarantees. The appropri-
ate choice depends on the application con-
text — strict enforcement for regulatory risk
use versus approximate correction for ex-
ploratory analyses.
In summary, maintaining arbitrage-freeness
remains a central challenge as deep learn-
ing advances in finance. To ensure re-
liability and interpretability, data-driven
models must remain anchored in finan-
cial theory, integrating no-arbitrage logic
— whether through architecture, physics-
informed losses, or corrective mechanisms
— as a fundamental component of credible
AI-based scenario generation consideration.

Approaches in Literature

This chapter provides an overview of the
analyzed approaches to market scenario
generation as found in the academic and
practitioner literature. Starting from the
concepts recalled on the classical statistical
techniques, here we survey emerging ma-
chine learning models, highlighting how
each method conceptualizes uncertainty,
represents dependence structures, and han-
dles regime dynamics. Particular atten-
tion is given to the ways in which different
approaches address practical requirements
such as stress realism, computational fea-
sibility, and the integration of expert judg-
ment.
The reader can find, for each studied ap-
proach, a brief description, the main results
drawn from the original papers, and a clos-
ing summary of the key takeaways. Like-
wise, the whole chapter concludes with an
overall synthesis of these methods, leaving
the reader the choice of where and how to
dig deeper.
Overall, through this lens, our aim is to clar-
ify the current state-of-the-art and identify
open questions that continue to shape this
evolving field.
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Scenario Generation Using GAN by Flaig

A notable contribution to the application of
deep learning in scenario generation is the
work of Flaig [17], who proposes a frame-
work for generating realistic market sce-
narios using generative neural networks.
The study focuses on the use of GANs as
tools to model the joint distribution of finan-
cial risk factors, emphasizing their ability
to capture non-Gaussian features, tail behavior,
and complex dependencies across multiple as-
sets. In particular, all simulations evaluated
by the author are based on multiple bench-
mark portfolios, with a different ratio of
risk classes, as shown in Figure 10.
One of the main strengths of this approach
is that it tries to model multiple risk classes
at once, learning directly from historical
observations without relying on restrictive
parametric assumptions. Figure 12 illus-
trates the generation of new scenarios us-
ing a GAN. The generated samples closely
replicate the structure of the historical data,
while also extending beyond the original ob-
servations, thus creating plausible but novel
scenarios. By contrast, a simple resam-

pling approach would be confined within
the boundaries of the original data cloud,
failing to generate such new variations.

The paper also offers a comparative analy-
sis with traditional techniques, demonstrat-
ing that neural approaches can outperform
both historical simulation and simple para-
metric models in capturing the marginal
and joint dynamics of financial variables. In
particular, Flaig’s GAN-based framework
is benchmarked against the risk scenarios
produced by Economic Scenario Generators
(ESGs) of European approved Solvency II in-
ternal models, drawing on the results of the
MCRCS study (available on EIOPA’s home-
page [46]). The comparison focuses on five
key risk factor categories: corporate credit
spreads, sovereign credit spreads, equities,
and interest rates (up and down shocks),
the results are shown in Figures 13, 11 and
14.

This work exemplifies the growing inter-
section between machine learning and fi-
nancial risk management, offering a scal-
able and adaptive alternative to classical
scenario generation methods.

FIGURE 10: Different composition of the benchmark portfolios used for Flaig analysis [17]. Each of the 10
portfolios are made as a ratio of 4 main risk classes: Sovereign bonds (blue), Equities (green), Real Estate (red)
and Corporate Bonds (orange).
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FIGURE 11: Comparison of the simulated shifts for equity risk factors, representation based on own results
(blue dots) and EIOPA (gray boxes) [17]. The plot shows that the shifts are broadly consistent across most
risk factors. For the FTSE100, the GAN generates less severe shocks compared to the other models. This
outcome reflects the characteristics of the training data, as the FTSE100 exhibited lower volatility than the
other indices over the period considered. Consequently, the GAN produces results that remain both plausible
and data-driven.

FIGURE 12: Scatterplots of four different risk factor pairs, empirical (blue dots) vs generated data by GAN
(orange dots) [17]. The scatterplots display four pairs of risk factors: 5-year vs. 10-year interest rates,
Eurostoxx50 vs. German government bond spreads, Italian vs. German government bond spreads, and AAA
vs. BBB corporate credit spreads. In each graph, the blue dots correspond to the 4,330 empirical data points
used for training, while the orange dots represent 50,000 scenarios generated by the GAN. As shown, the
points generated by the GAN exhibit a distribution closely aligned with that of the original empirical data,
while also introducing a greater diversity of samples. These newly generated data points lie within the same
underlying distribution but were not present in the original training set, demonstrating the model’s ability to
generalize beyond observed data.

GAN Applied to Synthetic Financial Sce-
nario Generation by Rizzato

Another important contribution to the field
of generative modeling for financial appli-

cations is provided by Marco Rizzato in
his work “Generative Adversarial Networks
Applied to Synthetic Financial Scenarios
Generation” [38]. The study investigates
the use of GANs to simulate synthetic fi-
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FIGURE 13: Comparison of the simulated shifts for the corporate and sovereign credit spread risk factors,
representation based on own results (blue dots) and EIOPA (gray boxes) [17]. As shown, the GAN-based model
aligns closely with the approved internal models, especially for corporate and sovereign spreads.

FIGURE 14: Comparison of the simulated shifts (left: up, right: down) for the interest rate risk factors,
representation based on own results (blue dots) and EIOPA (gray boxes). The up-shifts generated by the
GAN-based model fall within the reference boxes across all maturities, though for longer tenors they tend
to cluster toward the lower bound. This pattern reflects the training period, during which interest rates
were predominantly declining. For down-shifts, a different behavior emerges: short-term rates lie below
the boxes, while medium- and long-term rates remain within them. This outcome can be explained by the
sharp decline in short-term rates observed in the training data, in contrast to the relative stability of longer
maturities. The GAN replicates this behavior, whereas traditional ESGs, calibrated over longer horizons and
often supplemented with expert judgement, typically impose a floor on how negative rates are allowed to
become.

TABLE 5: Flaig (2023).

nancial time series aiming at replicating real market dynamics. The central idea is to train

54 www.iasonltd.com



Innovation

a GAN on historical asset returns so that
it learns their distributional properties and
can generate new synthetic paths that pre-
serve both marginal features and cross-asset
dependencies. The neural network architec-
tures evaluated in the paper are illustrated
in Figure 15.
Rizzato’s work highlights the flexibility
of GANs in capturing nonlinear, high-
dimensional distributions that are diffi-
cult to model with traditional statistical
approaches. The GANs successfully re-
produce the shape of the empirical dis-
tributions, as shown in Figures 16 and
17, and this similarity is quantitatively as-
sessed using performance metrics such as

the Kolmogorov–Smirnov test and Princi-
pal Component Analysis. From a statisti-
cal perspective, these tools provide stan-
dard methods for evaluating the closeness
of two multivariate distributions. Although
GANs have shown excellent performance,
Rizzato points out that in modeling high-
dimensional data distributions across many
domains, they are not universally applica-
ble generative models. In fact, GANs do not
provide an exact representation of the un-
derlying data distribution and furthermore
GANs with Gaussian priors can only gener-
ate sub-Gaussian distributions, highlighting
a fundamental theoretical limitation.

FIGURE 15: Graphical description of the two GAN used in the paper by Rizzato [38]. The BiGAN generator
is trained on the historical dataset, and its performance is assessed by comparing the historical test set
against an equally sized batch of synthetic data. The Conditional GAN, on the other hand, operates within a
conditional probability framework, offering a more nuanced evaluation.

Issue n. 30 / 2026 55



Argo Magazine

FIGURE 16: Triangle plot for the evaluation of the BIGAN generator S. Comparison between the real (blue)
and the generated (red) state variable transitions. This visualization allows to compare one-dimensional
(diagonal panels) and two-dimensional marginal distributions (off-diagonal panels) sorting them by couples of
variables. In each subplot, the 68% and the 95% confidence intervals are proposed [38]. As shown in the figure,
for each of the asset classes considered, the data generated by the BiGAN exhibit a distribution that closely
mirrors that of the real data — both in the univariate case and in the bivariate setting, when examining the
joint behavior of two classes.
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FIGURE 17: Triangle plot for the evaluation of the cGAN generator I. Comparison between the real (blue)
and generated (red) data. This visualization allows to compare one-dimensional (diagonal panels) and
two-dimensional marginal distributions (off-diagonal panels) sorting them by couples of features. In each
subplot, the 68% and the 95% confidence intervals are proposed [38]. As shown in the figure, for each of the
asset classes considered, the data generated by the cGAN exhibit a distribution that closely mirrors that of the
real data — both in the univariate case and in the bivariate setting, when examining the joint behavior of two
classes.

Generation of Realistic Synthetic Finan-
cial Time-Series by Dogariu

The article “Generation of Realistic Syn-
thetic Financial Time-Series” by Dogariu,
Ştefan, Boteanu, Lamba, Kim, and Ionescu
[13] addresses the challenge of producing
synthetic financial datasets that faithfully re-
produce key stylized facts such as heavy-
tail distributions, volatility clustering, au-
tocorrelation, and cross-asset correlations,
while enabling variable-length outputs and
better data augmentation for downstream
tasks. Rather than relying on sequence
modeling networks alone, the authors ex-
plore multiple neural architectures, includ-
ing fully connected GANs, convolutional

GANs, VAEs, and Generative Moment
Matching Networks (GMMNs), to generate
realistic synthetics from U.S. equity mar-
ket data, showing how such models handle
cross-correlation between different assets
and fixed-to-variable length time series. A
significant contribution of the paper is its
emphasis on evaluation methodology: be-
yond visual similarity, the authors intro-
duce a portfolio trend prediction frame-
work and quantitative metrics to validate
the effectiveness of generated series in port-
folio forecasting tasks. They demonstrate
that their synthetic data preserves both sta-
tistical and predictive characteristics when
applied to real trading scenarios.
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TABLE 6: Dogariu et al. (2023).

Time-Casual Variational Autoencoder Ap-
proach by Acciaio

A noteworthy recent contribution in the
field is the Time-Causal Variational Au-
toencoder (TC-VAE) developed by Acciaio,
Eckstein, and Hou [1], which addresses the
overlooked issue of temporal causality in
synthetic financial time-series generation.
The model’s loss function provides an up-
per bound on the causal Wasserstein dis-
tance between true market distributions
and generated sequences, offering theoreti-
cal guarantees on the closeness of statistical
performance in decision-making tasks such
as pricing, hedging, and portfolio optimiza-
tion. Numerical experiments on synthetic
models, such as Black-Scholes, are shown
in Figure 19.
The same paper also provides additional
comparisons with the Black–Scholes model,
focusing on log-path and volatility distribu-
tions for both real and synthetic paths. A
key metric employed is the sliced Wasser-
stein distance, which offers a principled
approach to jointly comparing all one-
dimensional projections between two mea-
sures, together with Gaussian-kernel MMD
[20] and Signature MMD [10]. Figure 21
illustrates that real and generated paths re-
main relatively close under all three met-
rics.
All these tests show that TC-VAE effectively

reproduces stylized market features (heavy
tails, volatility clustering, skewness, kur-
tosis, and low autocorrelations) while of-
fering strong performance on downstream
tasks evaluated against enhanced statistical
distance. This approach constitutes an im-
portant step forward in financial scenario
generation with AI by combining a princi-
pled time-causal structure, rigorous math-
ematical control via adapted Wasserstein
metrics, and empirical validation, making
TC-VAE a possible robust and reliable tool
for generating synthetic financial data.

Synthetic Financial Time Series Genera-
tion with LSTM by Schwarz

A recent and highly relevant contribution,
if not properly solely generative modeling,
is Schwarz contribution (2024) on finan-
cial time series with his work titled "Inter-
pretable GenAI: Synthetic Financial Time
Series Generation with Probabilistic LSTM"
[40]. Despite Generative models which
draw samples from the underlying data
distribution to produce a range of plausi-
ble and coherent financial scenarios, LSTM
based approaches are primarily designed for
forecasting, focusing on learning temporal de-
pendencies to predict future values.
The proposed model (see the neural net-
work design in Figure 22) addresses the
dual challenge of producing realistic mar-
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FIGURE 18: Time-casual variational autoencoder and generation. Unlike standard VAEs, TC-VAE enforces
causality constraints on both encoder and decoder, ensuring that each modeled time step depends only on past
observations, thus faithfully preserving the chronological structure of financial data.

FIGURE 19: Illustration of real paths from a siscretized Black-Scholes model (left) compared to fake paths
generated from TC-VAE model (right) [1]. As shown, the TC-VAE is able to reproduce paths that closely
resemble those observed in the training data, successfully capturing a comparable level of depth and variability
to that found in real-world cases.

ket scenarios while maintaining inter-
pretability, two attributes that are often at
odds in deep learning architectures.
What sets it apart is its incorporation of
interpretability constraints, allowing practi-
tioners to understand how scenarios are
formed from a blend of deterministic
components (e.g., ARMA/GARCH struc-
tures) and learned nonlinear transforma-
tions. Overall, Schwarz offers a compelling
paradigm: combining generative capability
with explainability and statistical structure.
This balances performance with under-
standability, and aims at helping bridge the

gap between black-box deep models and
classical financial time-series approaches.
Shwarz’s proposal stands out as a practical
tool for producing synthetic scenarios that
want to be both realistic and interpretable,
suitable for risk analysis, stress testing, al-
gorithmic strategy design, or data augmen-
tation.
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FIGURE 20: Visualization of marginal distributions at different time slices for real paths from a discretized
Black-Scholes model (blue) compared to fake paths generated from the TC-VAE model (orange) [1]. As observed,
the distributions are nearly overlapping across all the considered time slices, confirming the high reliability
and consistency of the TC-VAE model.

FIGURE 21: From left to right, we visualize the sliced Wasserstein distance, Gaussian MMD and signature
MMD. The green (respectively red) lines illustrate distances between real paths of the Black-Scholes model
and fake path generated from TC-VAE (respectively Sig-VAE); each line from a different random sees. The blue
dots show the distances between real paths and control apths under different volatility levels [1].

TABLE 7: Acciaio et al. (2024).
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TABLE 8: Schwarz (2024).

FIGURE 22: Schematic representation of the two LSTM layers feeding into a probabilistic output layer, here
illustrated as a conditional Gaussian distribution, but any other distribution could be used [40]. Schwarz’s
Probabilistic LSTM framework is designed to generate synthetic time-series that capture rich statistical
features, such as nonlinear dependencies, regime shifts, and volatility clustering, akin to traditional time series
models, but embedded within a generative context.

Issue n. 30 / 2026 61



Argo Magazine

FIGURE 23: Flow chart of algorithm starting from raw surface data to generated surfaces through VAE [36].

TABLE 9: Ning et al. (2022).

62 www.iasonltd.com



Innovation

Arbitrage-Free Implied Volatility with
VAE by Ning

No-arbitrage by-design approaches provide
the most principled route toward economi-
cally consistent generative models. One ef-
fective strategy involves developing ad hoc
architectures in which the model’s output
space is intrinsically restricted to arbitrage-
free representations. A notable example
is offered by Ning et al. (2022) [36], who
propose a Variational Autoencoder (VAE)
framework specifically tailored to generate
arbitrage-free implied volatility surfaces. In
their design, the decoder network produces
the parameters of the Stochastic Volatility
Inspired (SVI) functional form — an estab-
lished arbitrage-free parametrization that
ensures the absence of both butterfly and
calendar — spread arbitrage by construc-
tion.
Rather than learning raw option prices
or implied volatilities, the VAE captures
a low-dimensional latent representation
that is mapped to valid volatility surfaces
through this parameterization. This archi-
tectural constraint guarantees that every
generated surface satisfies no-arbitrage con-
ditions without additional regularization
or post-processing. The resulting model
combines the generative flexibility of VAEs
with financial consistency, making it partic-
ularly effective for risk management, model
calibration, and scenario generation. The
workflow of this approach is illustrated in
Figure 23.

Calibrating Option Price and Volatility
Surface Via Physics-informed Neural Net-
work by Hyeon-ok

An even more rigorous form of the free-
arbitrage by-design approach involves the
use of Physics-Informed Neural Networks
(PINNs), which integrate financial partial
differential equations (PDEs) directly into
the training objective. Unlike purely data-
driven models, PINNs learn simultaneously
from data and governing equations, ensur-
ing that outputs adhere to the fundamen-

tal dynamics of pricing models. In the
context of derivative valuation, the loss
function can include the residual of the
Black–Scholes PDE, compelling the network
to approximate solutions that satisfy the
equation across both spatial and temporal
domains.
A representative application is presented by
Hyeong-ok and Nam Sang-yoon (2023) [24],
who employ a PINN framework to jointly
calibrate option prices and implied volatility
surfaces. By embedding the Black–Scholes
dynamics directly into the loss function,
their model learns arbitrage-free pricing re-
lationships consistent with observed mar-
ket data. This paradigm elegantly combines
the data-driven adaptability of deep learn-
ing with the theoretical rigor of financial
mathematics, and is increasingly used for
high-dimensional pricing and calibration
tasks. The network architecture employed
for model training is illustrated in Figure
24.

Arbitrage-free Yield Curve and Bond Price
Forecasting by Deep Neural Networks by
Hyndman

Hyndman (2021) proposes a pre-fixing ap-
proach to enforce arbitrage-free conditions
within deep neural network frameworks for
yield curve and bond price forecasting. Rather
than correcting arbitrage violations after
generation, the model embeds projection-
based regularization directly into the train-
ing process, ensuring that the outputs re-
main consistent with the theoretical con-
straints of fixed-income markets. By in-
corporating these financial structure condi-
tions into the optimization objective, the
network learns to produce yield curves
that inherently satisfy no-arbitrage relation-
ships across maturities. This method ef-
fectively integrates economic interpretabil-
ity and machine learning flexibility, offer-
ing a robust mechanism for aligning data-
driven forecasts with market-consistent dy-
namics. The resulting model demonstrates
improved stability and financial coherence,
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making it a promising direction for appli-
cations in risk management, pricing, and
stress testing [25].

A Generative Model for Arbitrage-Free Im-
plied Volatility Surfaces by Vuletic

Vuletić (2023) introduces VolGAN, a gen-
erative adversarial network specifically de-
signed for the synthesis of arbitrage-free implied
volatility surfaces. The framework adopts a
post-fixing strategy, in which the model first
generates raw volatility surfaces through a
data-driven adversarial process, and subse-
quently applies a set of projection-based cor-
rection procedures to enforce financial con-
sistency. These post-processing steps are
aimed at minimizing arbitrage violations by
projecting the generated outputs back into

the admissible, arbitrage-free manifold. The
model effectively combines the expressive
capacity of GANs with the structural rigor
required in quantitative finance, produc-
ing volatility surfaces that remain realistic,
dynamically coherent, and consistent with
market constraints. Beyond arbitrage elimi-
nation, VolGAN demonstrates the potential
of generative models to capture complex
dependencies within the implied volatility
space, offering a flexible tool for applica-
tions such as option pricing, risk manage-
ment, and scenario generation [43].
To conclude this section, Table 12 provides
a concise summary of all the methodologies
discussed, highlighting their main charac-
teristics, achieved results and comparative
advantages in the context of financial sce-
nario generation.

FIGURE 24: Neural Network schema used by Hyeong-ok and Nam Sang-yoon [24], here x and τ are input
data, each are moneyness scaled strike price and time to maturity. uθ

1 and uθ
2 are neural networks parameter.

The input used for both the neural network is the same, the second neural network is used as a volatility
parameter of the partial differential equation constructed through automatic differentiation for the first one.
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TABLE 10: Hyeong-ok B. and Sang-yoon N. (2023).

TABLE 11: Hyndman (2021).

TABLE 12: Comparison of the main models (GAN, VAE, GMM, and RNN) according to key analytical criteria.

Open Challenges

While Generative AI presents a powerful al-
ternative, its application to financial sce-

nario generation is far from straightfor-
ward. The transition from academic "proof-
of-concept" to a robust, production-grade
system introduces several formidable chal-
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TABLE 13: Vuletic (2023).

TABLE 14: Comparison of main conditional generative models for financial scenario generation, highlighting
their integration mechanisms, strengths, and challenges.

lenges that must be addressed.
First, the "black-box" nature of many gen-
erative architectures (GANs, VAEs, Trans-
formers) can be a primary obstacle for their
adoption in risk management. For regu-
latory compliance and internal validation,
model interpretability is not optional. It
is not trivial to validate why a model pro-
duced, for example, a specific tail event. Of-
ten this low, if not lack of, transparency can
push for the choice of more interpretable
alternatives like Gaussian Mixture Models
(GMMs), which allow their factors (Gaus-
sian Principal Components) to be analyzed,
much like traditional PCA.
Second, the calibration and training com-
plexity is not to be underestimated. These
models are not "plug-and-play." Training
deep generative networks can be noto-
riously unstable (e.g., mode collapse in
GANs) and computationally expensive.
The process requires significant data engi-
neering and hyperparameter tuning, rival-
ing (and sometimes exceeding) the com-
plexity of calibrating sophisticated classical
models. On the other hand, once a model
is calibrated, the scenario generation can be
extremely fast, hence exploitable also for
(at least near-to) real-time simulations.

Third, the scope of existing research is often
too narrow for a real-world financial insti-
tution. The literature frequently presents
models calibrated on a single asset (e.g.,
S&P 500) or a single, isolated risk class
(e.g., interest rate curves). A bank or in-
surer, however, must model the entire mar-
ket — the complex, joint distribution of
multiple, heterogeneous risk classes (equi-
ties, rates, FX, credit, and commodities) si-
multaneously. Scaling these models to such
high dimensions while preserving delicate
inter-class correlations is a massive, and
largely unsolved, technical leap. To do so,
novel literature is trying to blend classical
approaches with AI, as in the "Copula Varia-
tional LSTM" propsed by Xu and CAo [44].
Fourth, the enforcement of financial consis-
tency, most notably the absence of arbitrage,
is not an inherent property of neural net-
works. Without specialized architectures
(like Autoencoder Market Models (AEMM)) or
complex, "physics-informed" loss functions,
a model may produce statistically plausible
but economically invalid scenarios, such as
violations of put-call parity or arbitrageable
yield curves.
Finally, one important and still largely over-
looked dimension in the field of AI-driven
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scenario generation for finance is condi-
tional generation, the ability to generate
future paths or market states that are ex-
plicitly dependent on given initial condi-
tions, macroeconomic assumptions, or mar-
ket configurations. Despite the increasing
sophistication of generative models, sur-
prisingly little attention has been paid in
the literature to this conditional setting, es-
pecially within the context of multi-asset,
risk-sensitive financial forecasting. Yet, con-
ditional generation has significant practi-
cal relevance: it allows risk managers and
decision-makers to ask meaningful "what-
if" questions, such as how markets might
evolve given a credit spread widening, a
spike in oil prices, or a central bank inter-
vention. It enables the production of coher-
ent and targeted scenarios that reflect the
distributional implications of specific condi-
tions, rather than relying on unconditional
or average-case dynamics.
In practice, conditional generation provides
a bridge between supervised inference and
generative simulation. It gives institutions
the ability to simulate plausible market evo-
lutions under regulatory stress scenarios,
or under internally defined stress assump-
tions, in a data-driven and probabilistically
consistent manner. This ability is particu-
larly useful in forward-looking risk assess-
ments such as ICAAP, CCAR, or Solvency II
projections, where the scenarios must not
only reflect plausible tail behaviors but also
remain consistent with certain macroeco-
nomic narratives or initial market config-
urations. Conditional generation thus en-
hances scenario relevance and realism while
retaining statistical diversity.
Different neural network architectures can
be adapted to tackle this problem, although
none of them has been explicitly designed
for this task in standard financial literature.
One natural starting point is the Condi-
tional VAE (CVAE), where the conditioning
variable is passed both to the encoder and
the decoder, allowing the latent space to
be learned in relation to a specified set of
market conditions. This setup enables the

generation of scenarios that are statistically
consistent with observed distributions, yet
anchored to specific assumptions or shocks.
CVAEs are particularly well-suited when
the goal is to map a structured condition
— such as a macroeconomic vector or a set
of factor values — to a wide distribution of
possible outcomes.
In the case of GAN, the extension to condi-
tional generation is achieved through Con-
ditional GANs (cGANs), where both the
generator and the discriminator are fed
with conditioning information. This setup
forces the generator to learn how to pro-
duce samples that are not just realistic, but
also coherent with the provided condition.
While powerful in theory, training stabil-
ity and mode collapse can become even
more acute in the conditional case, espe-
cially when dealing with high-dimensional
financial data with sparse conditional ex-
amples. Nonetheless, conditional GANs
offer a valuable framework for generating
scenario distributions that reflect specific
stress drivers or forward-looking views.
Recurrent neural networks (RNNs) and par-
ticularly Long Short-Term Memory net-
works (LSTMs) can also be adapted for
conditional generation by incorporating the
conditioning input into the initial state or
by concatenating the condition with each in-
put timestep. For example, an LSTM-based
model might take as input a time series of
historical prices along with a constant con-
ditioning vector (e.g., a shock to interest
rates), and generate a sequence of future
values that unfold under that assumption.
This approach is particularly appealing in
time-series applications where temporal co-
herence is critical. However, most LSTM-
based models in finance are trained uncon-
ditionally, missing the opportunity to lever-
age structured scenario guidance.
Another relevant but underutilized ap-
proach is the mixture density network
(MDN) or conditional Gaussian Mixture
Model (GMM), where the model outputs
the parameters of a distribution conditional
on input features. Such models are natu-
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rally capable of representing multi-modal
outcomes under specific initial states or
shocks, and they allow a high degree of
interpretability. However, their use in gen-
erative financial modeling, at the best of
our knowledge, it remains still extremely
studied.
The scarcity of literature on conditional gen-
eration in financial contexts is perhaps due
to the complexity of obtaining consistent,
labeled conditioning data, or the difficulty
in defining proper training objectives un-
der partial observability. Nonetheless, as
the use of machine learning in risk manage-
ment matures, the need for scenario gener-
ation tools that respond to precise assump-
tions or stress conditions will only grow.
Conditional generation offers a principled
and flexible solution to this need, making it
a critical area for future development.

Our Contribution

As presented in the previous chapters, there
is no single, universally accepted technique
for generating synthetic financial data. The
landscape is a complex trade-off between
the interpretability and proven effectiveness
for most cases of classical models and the
high-fidelity, data-driven power promised
by AI, especially GenAI. Each approach
comes with its own assumptions, strengths,
and limitations. For this reason, this pa-
per’s primary contribution is not to pro-
pose yet another novel architecture, but to
provide a methodological blueprint for the
selection, hybridization, and calibration of
these tools, specifically tailored for a pro-
duction setting in a financial institution.
The successful transition from theory to
a production-ready system is a complex
task requiring deep domain expertise. Our
contribution is to provide the specialized
methodological support to design, imple-
ment, test, and govern bespoke solutions at
each stage, ensuring a blend of AI innova-
tion and financial-grade robustness.

Scenario Classification and Data Frame-
work Design

• The Core Task: this initial stage in-
volves transforming vast, heteroge-
neous market data into a curated,
model-ready "Scenario Catalog".

• Our Value: this is not simple "tag-
ging". We partner with clients to ar-
chitect the data framework. Our ex-
pertise helps:

– Define the Problem Space: we iden-
tify the relevant risk factors, his-
torical regimes (e.g., "inflation-
shock", "flight-to-quality"), and
"semantic contexts" required for
a specific institutional need (e.g.,
Market Risk VaR, CCR, etc.).

– Data Augmentation Strategy: we
design and implement the pre-
processing pipeline, addressing
missing data, different time
scales, and heterogeneous data
structures (e.g., curves, surfaces).

Model Selection, Hybrid Design, and Cal-
ibration

• The Core Task: selecting, building,
and training a generative model that
is both statistically powerful and fi-
nancially consistent.

• Our Value: this is the primary techni-
cal hurdle where generic approaches
fail. We design and fine-tune bespoke
hybrid models by navigating the criti-
cal trade-offs:

– Model Selection: we can guide the
choice between different mod-
els and architectures, navigat-
ing the complexities and trade-
offs among high-fidelity, inter-
pretable latent-space, and data-
efficient, transparent factor mod-
els.

– Hybridization: we can architect
solutions that blend classical ap-
proaches with AI, such as using
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a VAE to learn a non-linear rep-
resentation of a yield curve, and
then applying a classical (and au-
ditable) stochastic process to its
latent factors.

– Constraint Enforcement: our core
expertise in financial modeling
can help in injecting financial do-
main knowledge directly into the
model — e.g., arbitrage-free con-
ditions and causality constraints
to ensure the model’s outputs
are not just plausible, but eco-
nomically valid and robust for
dynamic problems).

Validation, Governance, and Integration

• The Core Task: ensuring the cali-
brated model is trustworthy, main-
tainable, and usable within the bank’s
existing infrastructure.

• Our Value: a model is only
production-ready once it is governed.
We provide a complete validation and
governance framework:

– Rigorous Testing: we can move
beyond standard loss metrics to
perform comprehensive statisti-
cal validation of the synthetic
data, ensuring it correctly repro-
duces all critical stylized facts
(heavy tails, volatility clustering)
and, most importantly, preserves
complex cross-asset tail depen-
dencies.

– Governance & MLOps: we pro-
vide the clear documentation re-
quired for internal model valida-
tion teams and regulators. We
design the MLOps pipeline for
efficient retraining, monitoring,
and versioning of the generative
engine.

– Integration: we support the fi-
nal integration of the generative
model’s output into the institu-

tion’s existing risk engines, en-
suring the solution is scalable,
auditable, and truly operational.

Conclusion and Future Works

This work has reviewed the evolution of fi-
nancial scenario generation, from the foun-
dational classical techniques to the Gener-
ative AI models entering the scene. Tradi-
tional approaches, such as historical simu-
lation and Monte Carlo methods, remain
widely used and have been consistently
improved in the decades to overcome con-
straints on possibly reductive assumptions.
To tackle differently critical market stylized
facts like non-linear dependencies, heavy
tails, and volatility clustering, and blend-in
unstructured data, the academia and the
industry started to look for more flexible,
data-driven frameworks.
Our analysis detailed leading GenAI alter-
natives — GANs, VAEs, and GMMs with
their variants — along with LSTMs, and
surveyed key literature presenting their po-
tential. These models promise to offer a
powerful new toolkit for data augmenta-
tion and for generating high-fidelity sce-
narios by learning complex market struc-
tures directly from data. The primary
advantage of these AI-driven approaches
lies in their flexibility and potential for cus-
tomization. For instance, an Autoencoder
Market Model (AEMM) can provide a par-
simonious, data-driven representation of
yield curves, while a GMM offers an inter-
pretable factor model via Gaussian Princi-
pal Components (GPCs).
However, our review concludes that these
advanced models, even if worthy to be stud-
ied deeper and tested in use cases with fi-
nancial institutions, are not yet "production-
ready" off-the-shelf. Critical and practical
challenges remain. The "black-box" nature
of many deep learning models poses a sig-
nificant hurdle for internal validation and
regulatory approval; we acknowledge in-
deed that these approaches can be used
mainly, if not only, for managerial purposes.
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Furthermore, the calibration and training
complexity of these models is substantial,
often rivaling classical Monte Carlo in its de-
mand for expert tuning and computational
power.
Most importantly, two key gaps seems to
persist:

1. Scalability: the majority of existing
research remains narrowly focused
on single assets or risk classes. A
production-ready system must be ca-
pable of modeling the joint distribu-
tion of all heterogeneous, multi-asset
risk classes in a bank’s portfolio.

2. Financial Consistency: ensuring that
generated scenarios are, for example,
arbitrage-free is a non-trivial require-
ment that demands specialized archi-
tectures or complex loss functions.

Looking ahead, we see the future not in
a pure AI-only solution, but in hybrid ap-
proaches that combine the statistical rigor of
classical models with the adaptive power
of GenAI. In this context, Large Language
Models (LLMs) are poised to play a cru-
cial, dual role. First, we see their primary
strength not in generating the quantita-
tive scenarios themselves, but in managing
unstructured data, processing news, senti-
ment, and geopolitical reports to create the
rich, qualitative inputs for conditional sce-
nario generation. Second, LLMs can serve
as a powerful natural-language interface,
providing a "chat-like" entry point that al-
lows risk managers and business people to
translate financial intuition into robust, cal-
ibrated simulations. Ultimately, the path to
adoption relies on a practical framework for
selection, hybridization, and governance.
By carefully integrating these new technolo-
gies, financial institutions can leverage the
power of GenAI to build scenario gener-
ation tools that are not only data-driven
and realistic but also transparent, opera-
tionally feasible, and trusted for real-world
risk management and business applications.
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Annex

This chapter presents a structured overview of these methods, highlighting both classical
techniques and more recent data-driven frameworks. From traditional parametric models to
deep generative networks, the landscape of scenario generation has grown increasingly rich
and diverse — reflecting the complex, nonlinear, and high-dimensional nature of financial
markets. Understanding the underlying principles, assumptions, and trade-offs of each
approach is essential for selecting the most appropriate tool for a given risk management
or forecasting application.

Generative Adversarial Network

Generative Adversarial Networks (GANs), introduced by Ian Goodfellow et al. in 2014 [19],
represent a groundbreaking framework for training generative models. GANs leverage
game theory to model a system in which two neural networks — a generator and a
discriminator — are trained simultaneously in a minimax game. This approach enables the
generator to learn the underlying data distribution and produce highly realistic synthetic
data, without requiring explicit probability models or likelihood functions.
At the core of GANs is the interaction between two models:

• Generator (G): Takes as input a random noise vector z ∼ pz(z) (typically sampled
from a uniform or Gaussian distribution) and transforms it into a sample G(z) that
mimics the data distribution;

• Discriminator (D): Receives either a real data sample x ∼ pdata(x) or a generetad
sample G(z) and outputs the probability that the input is real (i.e., from the true data
distribution).

The generator and discriminator are trained in opposition: the generator aims to fool the
discriminator, while the discriminator aims to correctly classify real versus generated data,
in Figure 25 can be seen an example structure of a GAN. This dynamic is formalized as a
two-player minimax game:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log (1 − D(G(z)))].

Here, D(x) is the probability assigned by the discriminator that x is a real sample, and
G(z) is the synthetic sample produced by the generator from noise z. Goodfellow et
al. demonstrated that under optimal conditions, the generator recovers the true data
distribution pdata. Specifically, for a fixed generator G, the optimal discriminato r D ∗ (x) is:

D ∗ (x) =
pdata(x)

pdata
, (59)

where pg is the model distribution induced by the generator G. Plugging D∗ back into the
value function yields:

C(G) = max
D

V(D, G) = Ex∼pdata

[
log D∗(x)

]
+ Ez∼pz(z)

[
log(1 − D∗(G(z)))

]
= − log 4 + 2 · JSD(pdata ∥ pg).

(60)

This shows that minimizing the GAN objective is equivalent to minimizing the Jensen–Shannon
divergence (JSD) between the real and generated data distributions — a symmetric, bounded
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FIGURE 25: In the figure above there is an example of the architecture of a GAN. At the beginning a noised
input is fed to the generator to produce fake sample G(z). Both the real data X and the generated sample are
then given to the discriminator D, which learns to distinguish real from fake.

divergence measure.

GAN Extension: Conditional GAN

CGANs extend traditional GANs by introducing a conditioning vector y that influences
both the generator and the discriminator. This allows data x to be generated in a conditional
way, leading to more targeted and controllable outputs. The objective function becomes:

min
G

max
D

V(D, G) = Ex∼pdata(x)
[

log D(x, y)
]
+ Ez∼pz(z), y∼pdata

[
log(1 − D(G(z, y), y))

]
.

(61)

• The generator G receives both noise z and condition y as input, typically concatenated
before the upsampling stages;

• The discriminator D evaluates pairs (x, y) versus (G(z, y), y).

Gan Extension: Time GAN

TimeGAN (Time-series Generative Adversarial Network) is a powerful model designed
to generate realistic synthetic time series data while preserving both temporal dynamics
and realistic feature distributions. Traditional GANs struggle with time series because they
do not model temporal dependencies explicitly. TimeGAN addresses this by combining
supervised and unsupervised learning in a unified framework that captures both: step-wise
temporal dynamics and latent representations of multivariate data.
TimeGAN blends components of a GAN, an autoencoder and a recurrent network (usually
LSTM). Its architecture consists of:

• Embedding Network: learns a latent representation h of the original data x, typically
via a RNN encoder;

• Recovery network: reconstruncts the input from embedding x̂ = R(h);

• Generator G: generates latent sequences from random noise and conditions;

• Discriminator D: tries to distinguish real vs synthetic latent sequances;

• Supervisor S: predict the next latent state from the current one, helping model
temporal transitions.
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FIGURE 26: Example of a Variational Autoencoder (VAE). The input x is encoded into a mean µ and a standard
deviation σ, from which a latent vector z is sampled as a compressed low-dimensional representation of x. A
probabilistic decoder then reconstructs the data, generating x′.

And the training includes three losses, Reconstruction, Supervised and Adversaral Loss as
follow:

Ltot = Lrec + Lsup + Ladv = E[||x − x̂||2] + E[||ht+1 − ĥt+1||2] + min
G

max
D

E[log D(h)]

+ E[log(1 − D(ĥ))].
(62)

Variational Autoencoder

A Variational Autoencoder (VAE) is a type of generative model in machine learning that
learns a compressed representation of data while also being able to generate new, synthetic
data samples. A VAE consists of two neural networks:

• Encoder/Inference model qϕ(z|x): encodes input x to a latent distribution;

• Decoder/Generative model pθ(x|z): reconstructs x given latent z.

This setup implements amortized inference by sharing encoder parameters across data
points — far more efficient than traditional per-sample optimization. In Figure 26 is possible
to see an example of the architecture of a VAE.
Training maximizes the ELBO, which serves as a tractable lower bound on the data log-
likelihood ln pθ(x):

L(θ, ϕ; x) = Ez∼qphi(z|x)[ln pθ(x|z)]− DKL(qϕ(z|x)||p(z)). (63)

• Reconstruction term encourages pθ(x|z) to match true x;

• KL divergence regularizes latent z to stay close to the prior p(z), typically N (0, I).

Maximizing ELBO achieves a trade-off between accurate reconstructions and latent space
regularization.
To backpropagate through stochastic sampling, the reparameterization trick is used:

z = µϕ(x) + σϕ(x)⊙ ϵ, ϵ ∼ N (0, I). (64)

This transforms z-sampling into a differentiable operation, allowing efficient gradient
estimation with encoder parameters.
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VAE Extension: Conditionale VAE

Conditional Variational Autoencoders (CVAEs) are powerful models for learning conditional
generative processes. They extend standard VAEs by introducing a conditioning variable
y, allowing generation of data x conditioned on labels, attributes, or context. While the
idea is conceptually simple, practical challenges arise in training CVAEs effectively. In this
chapter, we revisit CVAEs through the lens of Christopher Beckham’s analysis, offering a
theoretically sound and empirically motivated perspective on their structure, training, and
trade-offs.
At the core of CVAEs lies the Evidence Lower Bound (ELBO), which becomes:

log pθ(x|y) ≥Eqϕ(z|x,y)[log pθ(x|z, y)]− DKL(qθ(z|x, y)||p(z|y)). (65)

A key modeling decision in CVAEs is whether to use a conditional prior p(z|y) or a fixed,
indipendent prior p(z). The dependent prior allows the latent space to shift in a way that
reflects the semantics of y, potentially enriching expressiveness.

VAE Extension: Time VAE

The Time-Variational Autoencoder (TimeVAE) framework combines probabilistic latent
variable modeling with temporal encoding mechanisms, enabling expressive and inter-
pretable time-series generation. TimeVAE can be viewed as an extension of the Variational
Autoencoder (VAE) that integrates temporal models like RNNs, GRUs, or transformers into
the encoder–decoder architecture. This allows the model to learn not only latent structure
but also temporal dynamics of sequences.
The model is trained to maximize the ELBO:

LELBO =
T

∑
t=1

Eqϕ(zt|x≤t,z<t)[log pθ(xt|zt)]− DKL(qϕ(zt|x≤t, z≤t)||pθ(zt|z<t). (66)

Recurrent Neural Network

In many real-world applications such as natural language processing, time-series forecasting,
and speech recognition, data is inherently sequential. Traditional feedforward neural
networks are inadequate for modeling such sequences, as they assume all inputs are
independent of each other. Recurrent Neural Networks (RNNs) address this limitation by
introducing cycles within the network architecture, enabling information to persist across
time steps.
An RNN processes input sequences one element at a time, maintaining a hidden state that
captures information from previous inputs. Given a sequence x = (x1, x2, ..., xT), the RNN
updates its hidden state ht and outputs yt at each time step using the following equations:

ht = ϕ(Whhht−1 + Wxhxt + bh); (67)

yt = Whyht + by. (68)

Here, ϕ is typically a non-linear activation function such as tanh or ReLU. The key idea is
that the hidden state ht carries temporal information across the sequence.
To address the shortcomings of vanilla RNNs, Hochreiter and Schmidhuber (1997) proposed
the Long Short-Term Memory network. LSTMs introduce a memory cell and gating
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FIGURE 27: Illustration of a Long Short-Term Memory (LSTM) unit. It contains three main gates: the forget
gate, the input gate, and the output gate, which regulate the flow of information and help capture long-term
dependencies in sequences.

mechanisms that regulate the flow of information, enabling the network to selectively retain
or discard information over long periods.
An LSTM unit consists of the following gates:

• Forget gate ft: Decides what information to discard from the cell state;

• Input gate it: Decides what new information to store;

• Cell candidate C̃t: Potential values added to the cell state;

• Output gate ot: Determines the output and hidden state.

In Figure 27 is showed an example architecture of a LSTM.
The computations are as follows:

ft = σ(W f [ht+1, xt] + b f ; (69)

it = σ(Wi[ht−1, xt] + bi); (70)

C̃t = tanh(WC[ht−1, xt] + bC); (71)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t; (72)

ot = σ(Wo[ht−1, xt] + bo; (73)

ht = ot ⊙ tanh Ct, (74)

where σ is the sigmoid activation function, ⊙ denotes element-wise multiplication, Ct is the
cell state at time t and ht is the hidden state output at time t.
LSTM networks are capable of learning dependencies over long time horizons by preserving
gradients and maintaining stable learning dynamics. They have become the de facto
standard in sequence modeling tasks prior to the rise of Transformer-based architectures.

Gaussian Mixture Models

Gaussian Mixture Models (GMMs) provide a flexible, unsupervised method to model such
heterogeneity by assuming that data are generated from a mixture of multiple Gaussian
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distributions. Unlike k-means clustering, GMMs offer a soft clustering approach, assigning
probabilities for a data point to belong to each cluster.
A Gaussian Mixture Model defines the probability density function (pdf) of a data point
x ∈ RD as a convex combination of K Gaussian components:

p(x) =
K

∑
k=1

πkN (x|µk, Σk), (75)

where:

• πk ∈ [0, 1] are the mixing coefficients, such that ∑K
k=1 πk = 1;

• µk ∈ RD: mean of the kth Gaussian;

• Σk ∈ RDxD: covariance matrix of the kth Gaussian;

• N ;(x|µk,Σk): multivariate Gaussian PDF.

GMM can be viewed ad a latent variable model where each data point xi is associated with
a latent cluster label zi ∈ {1, ..., K}. The generative process firstly sample a cluster index
zi ∼ Categorical(π1, ..., πK) and the sample the data point xi ∼ N (¯zi , Σzi).
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Credit Risk

We present a framework for establishing a mutual collateral scheme that a group of corporate
debtors can use to enhance the overall credit quality of the loan portfolio extended to
them by an investor. We analyze the extent of credit protection provided by the pooled

collateral and how the debtors can be compensated for it, based on actuarial and financial fairness
principles.

We analysed in a previous paper
(see Castagna [3]) a risk-sharing
mechanism for a group of com-

panies selling their accounts receivable to
an investor. In this work, we extend the idea
by analysing a collateral pooling agreement
that allows part of the investor’s credit risk
to be covered. The agreement should facili-
tate loan approval decisions and potentially
lead to an enhancement of the interest rate
paid by the borrowers.
The concept hinges on the old idea of mu-
tual aid, i.e.: an arrangement where re-
sources are voluntarily shared for the mu-
tual benefit of a group of peers. Contempo-
rary forms of mutual aid can be more easily
implemented through modern technologies
that enable effective organisation and oper-
ation of such schemes, often referred to as
P2P risk sharing.
Current research on P2P risk sharing in-
cludes Abdikerimova and Feng [1], who
analyse the concept of P2P risk transfer and
allocation networks; Denuit and Dhaene
[4], who introduce a conditional mean
risk-sharing mechanism to achieve Pareto-
optimality by leveraging the risk-reducing
properties of conditional expectations with
respect to convex ordering; building on this
approach, Denuit and Robert [5] formalise
the three business models dominating peer-
to-peer (P2P) property and casualty insur-
ance: the self-governing model, the broker
model, and the carrier model; Feng et al. [9]
propose a framework for P2P risk-sharing
pools based on Pareto optimality and actu-
arial fairness principles, providing an exact
solution for allocation ratios in the uncon-
strained optimal P2P risk-sharing setting,
with an application to catastrophe risk pool-
ing and several P2P alternatives for flood
risk management.

The work is organised as follows: we
present the general setup of a portfolio of
loans and the contract terms they share;
then, we analyse how collateral can be
posted by the borrowers and its dynam-
ics, also considering the credit losses suf-
fered by the lender. We then study how the
premium for the protection offered by the
pooled collateral is determined, and how
this premium should be allocated to indi-
vidual borrowers based on actuarial and
financial fairness conditions. Finally, we
investigate how to calculate the premium
through a numerical procedure and present
a practical implementation of the scheme.

Credit Risk and Collateral
Agreement

Let us assume that at time t = 0, a group
of companies seeks financing from one or
more lending entities. Each company i
(i ∈ {1, . . . , I}) requires funding for a no-
tional amount Ki(0), with maturity at t = T,
and agrees to pay an annual interest rate ri.
We assume that the maturity T is common
to all companies; a more general case will
be addressed later in this work.
The interval [0, T] is divided into discrete
time points at which interest and principal
payments occur, i.e., t ∈ {0, 1, . . . , T}.
Each loan is repaid according to an amorti-
sation schedule Ai(a), with a ∈ {1, . . . , T},
such that:

T

∑
a=1

Ai(a) = Ki(0).

The outstanding amount at any time t is
then defined as:

Ki(t) = Ki(0)− ∑
a≤t

Ai(a).
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The debtor companies are subject to possi-
ble default: let τi be the time of default of
debtor i. If t ≤ τi ≤ T, the lender suffers
a loss Li(τi), which is a percentage Lgdi
(assumed fixed) of the exposure at default
EADi(τi), i.e., the outstanding amount of
the loan at time τi. Thus:4

Li(τi) = EADi(τi)× Lgdi

=

[
Ki(0)−

τi−1

∑
a=1

Ai(a)

]
× Lgdi.

(76)

Let Di(t, s) ∈ {0, 1} be the indicator func-
tion of default (Di(t, s) = 1) for debtor i
between times t and s (t < s). The probabil-
ity that debtor i defaults between t and s is
denoted by PDi(t, s), which may be abbrevi-
ated as PDi when the context clearly refers
to the interval [0, T]. The corresponding sur-
vival probability is SPi(t, s) = 1 − PDi(t, s).
Although default can occur at any instant
τi, it is only observed at discrete times
within the interval [0, T]. We assume that
defaults among debtors are independently
distributed events.
The credit risk borne by the lender can com-
plicate the borrowing process, both in terms
of the amount actually lent - which may be
less than needed - and in terms of the in-
terest rate required to compensate for the
risk. To mitigate this issue, the debtor com-
panies agree to post collateral to reduce the
lender’s credit risk. To minimise the total
collateral posted and maximise its effective-
ness in reducing credit risk, the companies
agree to pool the collateral contributed by
each of them and use it to cover any credit
losses suffered by the lender, regardless of
which companies actually default.

Collateral Dynamics and Net Credit Loss

Depending on the arrangement between the
debtor companies and the lender(s), we can
determine the dynamics of the collateral
pool, assuming we are at time t = 0. In the

most general agreement, each company i
agrees to deposit as collateral an amount
of cash Ci equal to a percentage xi of the
initial borrowed amount Ki(0). The deposit
is made in M ≤ T instalments Cq

i (t) at one
or more times t, so that the total collateral
contributed by company i at any time t ≥ 0
is:

Ci(t) =
t∨M

∑
m=0

Cq
i (m) · (1 − Di(0, m)). (77)

The collateral contributed by company i de-
pends on the accumulation plan and the
survival of the company up to each instal-
ment time m. If company i survives up to
the last instalment time M, then for any
time t > M we have:

Ci(t) =
M

∑
m=0

Cq
i (m) = xiKi(0).

In a typical arrangement, the accumulation
schedule is the same for all debtors, and the
total collateral contributed by each of them
is a common percentage of the borrowed
amount.

The expected collateral contributed up to
time t, calculated at time 0, is:

ECi(t) = E[Ci(t)] =
M

∑
m=0

Cq
i (m) · SPi(0, m).

(78)

The pooled collateral CP(t) contributed by
all debtor companies is kept in an escrow
account until maturity T. At any time t, it
is simply the sum of the collateral posted
by each company:

CP(t) =
I

∑
i=1

Ci(t). (79)

Similarly, the expected pooled collateral at
time t, calculated at time 0, is:

ECP(t) = E

[
I

∑
i=1

Ci(t)

]
.

4We do not include in the credit loss the possible missed interest payments due from the debtor. These can
be easily incorporated into the analysis without substantially altering the structure of the arrangement, aside
from the definition of credit loss.
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Over the interval [0, T], the cumulative total
credit loss suffered by the lender is:

LP(T) =
I

∑
i=1

T

∑
t=1

Li(t) · Di(t − 1, t). (80)

The expected credit loss ELP(T) is then:

ELP(T) = E[LP(T)]

=
I

∑
i=1

T

∑
t=0

Li(t) · PDi(t − 1, t).
(81)

This loss can be mitigated by the available
collateral.
It is also useful to compute the present
value of ELP(T). In general terms, let
D(t, T) be the discount factor used to com-
pute the present value at time t of a cash
flow occurring at time T. Denoting by rt

the instantaneous risk-free interest rate at
time t, we have:

D(t, T) = exp
(
−
∫ T

t
rs ds

)
.

In a stochastic interest rate framework, the
discount factor is defined as:

P(t, T) = EQ [D(t, T)]

= EQ
[

exp
(
−
∫ T

t
rs ds

)]
,

where the expectation is taken under the
risk-neutral measure Q. We also assume
that rs is independent of any other stochas-
tic variable in the model we are presenting.

The present value of the expected total
credit loss is:

ELD
P (T) = E

[
I

∑
i=1

T

∑
t=0

D(0, t)Li(t)Di(t − 1, t)

]

=
I

∑
i=1

T

∑
t=0

P(0, t)Li(t)PDi(t − 1, t).

(82)

Whenever a debtor defaults, the collat-
eral is used to compensate the lender for
the outstanding amount of the loan, i.e.,
EADi(t) = Ki(0)− ∑a<t Ai(a). The credit

loss suffered by the lender upon the default
of debtor i is zero only if a sufficient resid-
ual amount of pooled collateral is available,
considering previous defaults. Since the
collateral is accumulated according to a pre-
defined schedule, it can be used to cover
both future and past credit losses.
At time T, the present value of the cumula-
tive total credit loss suffered by the lender,
net of the protection offered by the pooled
collateral CP(T), denoted by NLD

P (T), is:

NLD
P (T) =

I

∑
i=1

T

∑
t=1

D(0, t)Li(t)Di(t − 1, t)

−
T

∑
t=1

D(0, t)∆R(t),

(83)

where ∆R(t) = min[LP(t), CP(t)] −
min[LP(t − 1), CP(t − 1)] represents the
compensation for credit losses at each time
t, including possible uncovered past losses.
The protection from credit losses is capped
at the available pooled collateral, which
may be fully exhausted by time T, or par-
tially used, leaving residual collateral to be
redistributed to the debtor companies ac-
cording to a predefined rule.
The collateral can be interpreted as a form
of insurance against credit losses, with a
cap at the total pooled amount funded ac-
cording to the instalment plan set at time 0.
The expected value of the present value of
the net loss is:

ENLP(T) = E[NLD
P (T)]

= ELD
P (T)− E

[
T

∑
t=1

D(0, t)∆R(t)

]
.

(84)

The first term on the right-hand side of
Equation (84) is the expected loss of the
loan portfolio; the second term is the ex-
pected coverage provided by the available
collateral, capped at its total pooled value.
Under fair actuarial principles, the pre-
mium Π that the lender would pay to pur-
chase the protection offered by the pooled
collateral arrangement equals the expected
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present value of the credit loss coverage:

Π =
T

∑
t=1

P(0, t) · E [min[LP(t), CP(t)]

− min[LP(t − 1), CP(t − 1)].

(85)

This premium should be paid to the indi-
vidual debtors and depends, in addition to
the planned total amount to be posted, also
on the probability that the pooled collateral
is not fully contributed by each company,
in cases where the collateral is posted ac-
cording to a schedule rather than upfront.
There is a risk that a debtor may default
before contributing the full amount. Pos-
sible approaches to the valuation of Π are
presented in the following sections.

Fair Allocation of the Premium
and of the Remaining Collateral

Since the pooled collateral can be inter-
preted as the full funding of a capped in-
surance against credit losses suffered by the
lender, debtor companies should be fairly
remunerated for their expected contribu-
tion to covering actual losses (within the
limit of the posted collateral). In this sec-
tion, we outline the rules for making the
entire pooled collateral agreement fair for
all debtors.
We consider a setup in which every debtor
company participates in the reimbursement
of the remaining collateral pool, regardless
of whether it defaulted before time T. This
setup allows for a tractable - though not
closed-form - solution to the problem.
Let us consider company i: it contributes an
expected amount E[Ci(T)] to the collateral
pool according to the contribution sched-
ule. For this contribution, it should receive
a fraction 0 ≤ αi ≤ 1 (with ∑i αi = 1) of
the total insurance premium Π paid by the
lender for the credit protection provided by
the collateral pool. Additionally, if some
collateral remains after covering the credit
losses at time T, company i receives a frac-
tion 0 ≤ βi ≤ 1 of this residual amount.

At maturity T, the total outcome for com-
pany i resulting from the collateral agree-
ment is:

RA
i (T) = αiΠ

+ βi max
[ I

∑
i=1

T

∑
t=1

Ci(t)

−
I

∑
i=1

T

∑
t=1

Li(t)Di(t − 1, t), 0
]

− Ci(T).

(86)

The quantities αi and βi represent what
company i receives, respectively, as a frac-
tion of the premium and of the residual col-
lateral after the credit losses are deducted
(this quantity is clearly floored at zero),
while Ci(T) is its actual contribution to the
collateral pool. It should be noted that
Equation (86) does not include any dis-
counting of cash flows and should be in-
terpreted purely from an actuarial fairness
perspective.
We can rewrite the argument of the max
operator in Equation (86) as:

max
[ I

∑
i=1

T

∑
t=1

Ci(t)−
I

∑
i=1

T

∑
t=1

Li(t)Di(t − 1, t), 0
]

=

[
I

∑
i=1

T

∑
t=1

Ci(t)

− min
[ I

∑
i=1

T

∑
t=1

Li(t)Di(t − 1, t),
I

∑
i=1

T

∑
t=1

Ci(t)
]]

.

Taking the expected value of RA
i (T), and

using Equation (85), we obtain:

E[RA
i (T)] =

αiΠ + βi [E[CP(T)]− Π]− E[Ci(T)].
(87)

Equation (87) explicitly shows the expected
net collateral return (the term in square
brackets) as the difference between the ex-
pected collateral pool at time T and the
expected credit losses, which equal the fair
premium Π. Actuarial fairness requires that
E[RA

i (T)] = 0, and thus we must define
rules for setting αi and βi to satisfy this con-
dition.
Let us start with the share of residual
pooled collateral βi. The rule we aim to de-
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fine must satisfy the following constraints:

0 ≤ βi ≤ 1,

∑
i

βi = 1,

so that the residual collateral is fully re-
turned to the debtor companies, and none
of them is required to make any additional
payment. A simple and sensible rule is to re-
turn to each company a share proportional
to its expected contribution to the collateral
pool up to time T, i.e.,

βi = β∗
i =

ECi(T)
ECP(T)

. (88)

It is easy to verify that this rule satisfies
both constraints.
Plugging Equation (88) into Equation (87),
and computing the expected value, we ob-
tain:

E[RA
i (T)] = αiΠ − ECi(T)

ECP(T)
Π. (89)

From Equation (89), the fair value of αi that
ensures E[RA

i (T)] = 0 is:

αi = α∗
i =

ECi(T)
ECP(T)

. (90)

This choice also satisfies the constraints on
αi.
While these conditions ensure actuarial fair-
ness, they do not necessarily guarantee fi-
nancial fairness. To address this, we must
consider the timing of the various cash
flows and apply appropriate discounting.
Discounting the cash flows in Equation (86)
can be done under different assumptions
regarding when the premium Π is paid to
each borrower. Without loss of generality,
we assume the premium is paid in instal-
ments over the dates t ∈ {0, . . . , T}, with
each instalment equal to a fraction ξ of Π.
The discounted return from the collateral

agreement is then:

RF
i (T)

= α∗i ξΠ
T

∑
t=0

D(0, t) + β∗
i D(0, T) [CP(T)− Π]

−
M

∑
m=0

D(0, m)Cq
i (m)(1 − Di(0, m)).

(91)

Taking expectations, we obtain:

E[RF
i (T)] =

= α∗i ξΠ
T

∑
t=0

P(0, t) + β∗
i P(0, T) [ECP(T)− Π]

−
M

∑
m=0

P(0, m)Cq
i (m) · SPi(0, m),

(92)

where ξ is such that α∗
i ξΠ ∑T

t=0 P(0, t) =

α∗
i Π. The introduction of discounting gener-

ally implies E[RF
i (T)] ̸= 0, so we introduce

an additional payment Φi from the lender
to each borrower, paid with the same sched-
ule and fraction ξ as the premium Π, to
restore financial fairness. That is:

E[RF
i (T)]

= α∗
i ξ(Π + Φi)

T

∑
t=0

P(0, t)

+ β∗
i P(0, T) [ECP(T)− Π]

−
M

∑
m=0

P(0, m)Cq
i (m) · SPi(0, m) = 0.

(93)

Let ECD
i = ∑M

m=0 P(0, m)Cq
i (m) · SPi(0, m).

Then the additional payment is making nil
the financial return RF

i (T) is:

Φi = Φ∗
i =

ECD
i − β∗

i P(0, T) [ECP(T)− Π]

α∗
i ξ ∑T

t=0 P(0, t)

−
α∗

i ξΠ ∑T
t=0 P(0, t)

α∗
i ξ ∑T

t=0 P(0, t)
.

This value will typically be negative. These
payments by the lender may be netted, on
each date, with the payments the debtor
must make for interest and amortisation of
the loan.
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Application of the Framework
to a Homogeneous Portfolio

We implement the model under the assump-
tion of a homogeneous portfolio of debtor
companies and loans. More realistic as-
sumptions will be addressed later by ap-
proximating the formulae derived for the
homogeneous case.
This portfolio consists of I debtor com-
panies, each with an identical probabil-
ity of default, i.e., PDi(t, s) = PD(t, s) for
s ∈ [0, T], t ≤ s. It is important to stress
that all defaults are independent events.
Additionally, each company borrows the
same initial amount Ki(0) = K(0), fol-
lows the same amortisation schedule
∑T

a=0 Ai(a) = ∑T
a=0 A(a), and has the

same loss given default, so that Li(τi) =

L(τi) = EAD(τi) × Lgd. All companies
also post the same amount of collateral ac-
cording to the same payment schedule, i.e.,
Ci(m) = xiKi(0) = C(m) = xK(0), with
∑M

m=0 Cq
i (m) = ∑M

m=0 Cq(m) = xK(0).
Under these assumptions, the number of
defaults between times t and s follows a
binomial distribution Bt,s(I, PD(t, s)), with
I trials. The cumulative total credit loss
distribution is directly linked to the default
distribution. At any time t, the default of
a company in the interval [0, t] produces a
loss equal to the fraction of the outstanding
portfolio L(τi), due to the homogeneity of
the loans and amortisation schedules.
The total credit loss density function be-
tween t − 1 and t is:

LP(t − 1, t) = L(t)×B′(i, I, PD(t − 1, t)),
(94)

where B′(i, I, PD) is the binomial density
function evaluated at i, i.e., the probability
that exactly i defaults occur.
The expected credit loss is:

ELP(t − 1, t) = E[LP(t − 1, t)]

=
I

∑
i=1

i × L(t)×B′(i, I, PD(t − 1, t))

= I × L(t)× PD(t − 1, t).

(95)

The standard deviation (volatility) of the
total credit loss is:

Vol(LP(t − 1, t)) =

I × L2(t)× PD(t − 1, t)(1 − PD(t − 1, t)).
(96)

Unfortunately, even under the homoge-
neous portfolio assumption, the premium
Π (i.e., the expected protection offered by
the collateral pool) cannot be computed
in closed form. We propose a numerical
scheme inspired by methods from Duffie
and Garleanu [7], Duffie and Singleton [8],
Duffie [6], and Brigo, Pallavicini, and Torre-
setti [2]. The procedure exploits the homo-
geneous portfolio assumption:

Procedure 1 (Premium Valuation under Ho-
mogeneous Portfolio).

1. Let S be the total number of simula-
tions and sd(t) the number of surviving
debtors at time t.

2. For each of the S simulations, set sd(0) =
I, CP(0) = sd(0)× Cq(0), LP(0) = 0,
Πs(t) = 0, and Πp = 0.

3. For each time t ∈ {1, . . . , T}, draw the
number of defaults nd(t) from a binomial
distribution B(sd(t − 1), PD(t − 1, t)).

4. Update the total credit loss: LP(t) =

LP(t − 1) + nd(t) × Lgd × EAD(t −
1).

5. Update the number of surviving debtors:
sd(t) = sd(t − 1)− nd(t).

6. Update the posted collateral: CP(t) =

CP(t) + sd(t)× Cq(t).

7. Update the premium:

Πs(t) = Πs(t − 1)

+ P(0, t)
[

min
(

LP(t), CP(t)
)

− min
(

LP(t − 1), CP(t − 1)
)]

.

8. Store the premium: Πp = Πp + Πs(T).

9. After completing all S simulations, com-
pute the premium: Π = Πp/S.
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TABLE 15: Total collateral contributed under different probability of default scenarios and collateral contribu-
tion schedules.

TABLE 16: Approximation by MMT to a homogeneous portfolio in the first scenario for probability of default.

It is important to note that this approxima-
tion is used only to compute the premium
in Equation (85), while all other quantities
must be computed using the original input
data.
Procedure 1 must be adapted to carefully
handle the number of debtors and the post-
ing of collateral. We propose the following
procedure, which extends the original one
designed for the homogeneous portfolio:

Procedure 2 (Premium Valuation under Ap-
proximated Homogeneous Portfolio).

1. For each time t ∈ {1, . . . , T}, compute
PD∗(t − 1, t), EAD∗(t), and I∗(t) from
the actual data.

2. From the actual collateral instalment
schedule, compute the equivalent instal-
ment:

Cq∗(m) =
1

I∗(m)

I

∑
i=1

Cq
i (m).

3. Let S be the total number of simula-
tions and sd(t) the number of surviving
debtors at time t.

4. For each of the S simulations, set:
sd(0) = I∗(0), CP(0) = sd(0) ·
Cq∗(0), LP(0) = 0, Πs(t) = 0,
Πp = 0, cnd%(0) = 0.

5. For each time t ∈ {1, . . . , T}, draw the
number of defaults nd(t) from a binomial
distribution B(sd(t − 1), PD∗(t − 1, t)).

6. Update the cumulative default percentage:

cnd%(t) = cnd%(t − 1) +
nd(t)

sd(t − 1)
,

if sd(t − 1) = 0 then cnd%(t) = 1.

7. Update the total credit loss:

LP(t) = LP(t − 1) + nd(t)

· Lgd · EAD∗(t − 1).

8. Update the posted collateral:

CP(t) = CP(t)

+ [sd(t − 1)− nd(t)] · Cq∗(t).

9. Update the number of surviving debtors:

sd(t) = ⌊I∗(t) · [1 − cnd%(t)]⌋ .
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10. Update the premium:

Πs(t) = Πs(t − 1)

+ P(0, t)
[

min
(

LP(t), CP(t)
)

− min
(

LP(t − 1), CP(t − 1)
)]

.

11. Store the premium:

Πp = Πp + Πs(T).

12. After completing all S simulations, com-
pute the final premium:

Π =
Πp

S
.

Procedure 3 is quite efficient and easily im-
plemented.

Approximation to a
Homogeneous Portfolio

We resort to an approximation that makes
the actual portfolio as similar as possible
to an equivalent homogeneous portfolio.5

This approach allows us to derive, for each
time t ∈ {1, . . . , T}, the equivalent default
probability PD∗(t − 1, t), the outstanding
loan amount EAD∗(t), and the equivalent
number of debtors I∗(t) of a homogeneous
portfolio that approximates the actual one,
assuming that the loss given default is the
same for all debtors, i.e., Lgdi = Lgd.
We apply a Moment Matching Technique
(MMT), which equates the first and second
moments of the credit loss, i.e.: the expected
value and variance of the actual portfolio
over the period [t − 1, t], to those of the
equivalent homogeneous portfolio. This
is done under the constraint that the total
value of the outstanding loans in both port-

folios is the same. Formally:

E[L(t − 1, t)] =
I

∑
i=1

Li(t) · PDi(t − 1, t) = I∗(t) · L · PD∗(t − 1, t)

Var[L(t − 1, t)] =
I

∑
i=1

(L∗
i (t))

2 · PDi(t − 1, t) · (1 − PDi(t − 1, t)) =

I∗(t) · (L∗
i (t))

2 · PD∗(t − 1, t) · (1 − PD∗(t − 1, t))

I∗(t) · EAD∗(t) = K

,

where K = ∑i EADi(t) is the total value of
the outstanding loans at time t. The solu-
tion to the system () is:


PD∗(t − 1, t) = ∑I
i=1 EADi(t) · PDi(t − 1, t)

K

EAD∗(t) =

∑I
i=1 EAD2

i (t) · PDi(t − 1, t) · (1 − PDi(t − 1, t))
K · PD∗(t − 1, t) · (1 − PD∗(t − 1, t))

I∗(t) =
K

EAD∗(t)

. (97)

It is important to note that this approxima-
tion is used only to compute the premium
in Equation (85), while all other quantities
must be computed using the original input
data.
Procedure 1 must be adapted to carefully
handle the number of debtors and the post-
ing of collateral. We propose the following
procedure, which extends the original one
designed for the homogeneous portfolio:

Procedure 3 (Premium Valuation under Ap-
proximated Homogeneous Portfolio).

1. For each time t ∈ {1, . . . , T}, compute
PD∗(t − 1, t), EAD∗(t), and I∗(t) from
the actual data.

2. From the actual collateral instalment
schedule, compute the equivalent instal-
ment:

Cq∗(m) =
1

I∗(m)

I

∑
i=1

Cq
i (m).

3. Let S be the total number of simula-
tions and sd(t) the number of surviving

5See Castagna [3] and the references therein for the same approach applied to a portfolio of receivables.
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debtors at time t.

4. For each of the S simulations, set:
sd(0) = I∗(0), CP(0) = sd(0) ·
Cq∗(0), LP(0) = 0, Πs(t) = 0,
Πp = 0, cnd%(0) = 0.

5. For each time t ∈ {1, . . . , T}, draw the
number of defaults nd(t) from a binomial
distribution B(sd(t − 1), PD∗(t − 1, t)).

6. Update the cumulative default percentage:

cnd%(t) = cnd%(t − 1) +
nd(t)

sd(t − 1)
,

if sd(t − 1) = 0 then cnd%(t) = 1.

7. Update the total credit loss:

LP(t) = LP(t − 1)

+ nd(t) · Lgd · EAD∗(t − 1).

8. Update the posted collateral:

CP(t) = CP(t)

+ [sd(t − 1)− nd(t)] · Cq∗(t).

9. Update the number of surviving debtors:

sd(t) = ⌊I∗(t) · [1 − cnd%(t)]⌋ .

10. Update the premium:

Πs(t) = Πs(t − 1) + P(0, t)

[min(LP(t), CP(t))− min(LP(t − 1), CP(t − 1))] .

11. Store the premium:

Πp = Πp + Πs(T).

12. After completing all S simulations, com-
pute the final premium:

Π =
Πp

S
.

Procedure 3 is quite efficient and easily im-
plemented.

TABLE 17: Approximation by MMT to a homogeneous portfolio in the second scenario for probability of
default.
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Application to a Realistic
Portfolio

We apply the framework sketched above to
a realistic portfolio consisting of 100 loans.
The details of each loan are shown in Ap-
pendix "Loan Portfolio Details". Table 21
provides, for each debtor, the initial amount
and the amortisation schedule. All loans
start at time t = 0 and mature at time t = 5.
In Table 22, we report the probability of de-
fault PD for each debtor under two differ-
ent scenarios: the first with moderately low
probabilities, and the second with higher
ones. We assume that PD is constant over
each of the five years of the loan duration.
The (weighted) average PD for the entire
portfolio is 3.56% in the first scenario and
5.40% in the second.
For each probability scenario, we also con-
sider the expected collateral contributed by
each debtor under two assumptions:

• A single contribution made fully at
the inception of the loan;

• A contribution made in five instal-
ments, one at the beginning of each
year.

In the first case, the possibility of default
has no impact on the contributed amount.
In both cases, the total contributed collat-
eral (if the debtor does not default before
completing the instalment schedule) is 10%
of the initial borrowed amount.
Given the expected contributed collateral
ECi(5), we compute the parameters βi = αi
that make the expected return in Equation
(87) equal to zero for each debtor. The total
collateral for each probability of default sce-
nario and contribution schedule is reported
in Table 19. It is clear that the smaller ex-
pected amount of collateral (25,269) refers
to an accumulation plan in 5 instalments in
the higher probability of deafult scenario.
We now compute the total premium Π,
which should be paid by the lender to the
debtors, under two different probability of
default scenarios and five assumptions re-
garding the collateral contribution schedule,

ranging from 1 to 5 instalments.
For the computation, we first apply the
Moment Matching Technique (MMT) de-
scribed in Section "Approximation to a Ho-
mogeneous Portfolio" to approximate the
actual portfolio with an equivalent homo-
geneous portfolio in each of the five years.
For the first PD scenario, the expected loss,
second moment, and variance-along with
the three quantities solving the system in
Equation (97) - are reported in Table 16. The
same results for the second PD scenario are
shown in Table 17.
We now implement Procedure 3 to com-
pute the total premium Π, which should
be paid by the lender to the debtor compa-
nies. The computation is performed under
the two different PD scenarios and across
five assumptions regarding the collateral
contribution schedule, ranging from 1 to 5
instalments.
The results for the total premium Π in ab-
solute terms are reported in Table 18, while
the same results expressed as a percentage
of the initial amount of the loan portfolio
are shown in Table 20.
It can be noted that the level of the pre-
mium is, not surprisingly, linked to the av-
erage level of the default probabilities of
the debtors. In the first case (average of
3.56% p.a.), the premium is around 5.70%
of the initial notional of the loans, for a to-
tal theoretical collateral pool of 10% of the
same value. In the second case (5.40% p.a.),
the premium varies from around 8.00% to
7.50%.
More unexpectedly, the dependence of
the premium on the collateral contribution
schedule is very mild: it is practically negli-
gible in the first PD scenario, and around
0.5% in the second scenario.
As a final application, we show how to cal-
culate the total premium including the extra
payment Φ that ensures financial fairness.
Consider debtor 1, with all details taken
from the tables in Appendix "Loan Portfo-
lio Details, for the first PD scenario. We
assume that both the fraction of the pre-
mium α1Π and the extra payment Φ1 are
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TABLE 18: Premium Π for the credit protection, in each of the two scenarios of default probabilities and
collateral contribution schedule with different number of instalments. Absolute values.

TABLE 19: Total collateral contributed under different probability of default scenarios and collateral contribu-
tion schedules.

paid at the start of each year of the loan’s
duration, regardless of whether the debtor
survives until expiry or defaults earlier.
Let us assume that the annual risk-free in-
terest rate is constant at 3.5%. The discount
factors are given by:

P(0, n) = exp(−0.035 × n).

Additionally, we assume that the collateral
is contributed by debtor 1 in 5 instalments
at the beginning of each year of the loan’s
duration. The probability of default is taken
from the first scenario.
First, we compute the quantity ξ in Equa-
tion (93), and we have:

ξ =
α∗

i Π
α∗

i Π ∑T
t=0 P(0, t)

.

Since α1Π = 242.18, we get:

ξ = 0.21.

Calculation of the extra payment Φi is now
straightforward from Equation ():

Φi = −51.60.

which is negative, as expected.
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TABLE 20: Premium Π for the credit protection, in each of the two scenarios of default probabilities and
collateral contribution schedule with different number of instalments. In percentage of the initial value of the
portfolio of loans.

Conclusion

We proposed a collateral pooling scheme
that offers credit protection to the lender
of a portfolio of loans to corporate debtors.
The framework is flexible enough to allow
for the contribution of collateral in instal-
ments, even during the life of the loans.
The value of the credit protection offered by
the collateral, and the corresponding pre-
mium to be paid to the debtors, has been
derived. The allocation of this premium
and of the remaining collateral at the expiry
of the loan portfolio is determined based on
actuarial and financial fairness conditions.
More sophisticated schemes and alternative
options for allocating the residual collateral
- and consequently the premium - can be
designed starting from the present frame-
work. Also a credit model that allows for a
correlation of default events would be make
the framework more effective.
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Annex

Loan Portfolio Details

Table shows the details of the portfolio of loans. Each loan starts on the same date t = 0
and expires on t = 5.

TABLE 21: Premium Π for the credit protection, in each of the two scenarios of default probabilities and
collateral contribution schedule with different number of instalments. In percentage of the initial value of the
portfolio of loans.
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TABLE 21: Premium Π for the credit protection, in each of the two scenarios of default probabilities and
collateral contribution schedule with different number of instalments. In percentage of the initial value of the
portfolio of loans.
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TABLE 21: Premium Π for the credit protection, in each of the two scenarios of default probabilities and
collateral contribution schedule with different number of instalments. In percentage of the initial value of the
portfolio of loans.
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TABLE 22: Probability of default of each debtor, expected collateral contributed in 1 instalment and 5
instalments and parameters β = α for each debtor (in the two different probability of default scearios).
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TABLE 22: Probability of default of each debtor, expected collateral contributed in 1 instalment and 5
instalments and parameters β = α for each debtor (in the two different probability of default scearios).
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TABLE 22: Probability of default of each debtor, expected collateral contributed in 1 instalment and 5
instalments and parameters β = α for each debtor (in the two different probability of default scearios).
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