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Executive Summary

In the financial sector the regulation prescribes what risk measures have to be
implemented to guarantee a safe banking system. Due to the forthcoming new
regulation about the market risk (FRTB), the banks have recently developed
Montecarlo models to estimate the Default Risk Charge (DRC), namely a 1-year VaR
at 99.9% confidence level related to the losses coming from the default events in the
trading book. Banks have put a lot of effort in the modeling step of the process, i.e
how to build the simulation algorithm for the process: what are the risk factors,
how to define the default event, how to infer the correlations among the obligors
and so on. Despite the extreme quantile estimation is a well-known problem in the
statistical field, it has received less attention by the banks modelers. In our paper
we review the context and the existing literature, hence we compare on real data
the performance of some advanced quantile estimators for the DRC measure that
could be used to challenge the classical empirical quantile. For small-medium size
samples the results are encouraging.
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A Comparison of Advanced

Methods for the Quantile
Estimation in the Risk
Management Field

Michele Bonollo Leonardo Mastrototaro

in the banking regulation (the so-called Basel framework) that asked for more risk measures

to the banks, to capture any potential source of risk (losses). Several quantitative disciplines
were exploited to build more safe risk models, taking the techniques mainly from probability,
stochastic processes, mathematical finance. Most of the attention of both the academic and financial
community was devoted to build accurate models for the losses distributions, to define proper risk
measures (e.g. the Value at Risk quantile vs. the Expected Shortfall), to decompose them to get a
breakdown, to develop robust data quality steps for the market data. An exhaustive description of
the risk management models is given in the following [9]. Some details about the risk measures
breakdown are available in [5] and [6]. A recent deep analysis of the desirable properties of the
risk measures is provided by [1]. Surpingsly, relative few attention was receveid by the last step
of the risk management process, i.e. the measure estimation based on the empirical (or simulated)
data. Given the model, given the data, it may happen that the risk estimation is not reliable, because
of the usual uncertainty embedded in the historical or simulated data. This issue is very general,
as it must be faced for any model (parametric or nonparametric) and for all risk measures (VaR,
ES, ComponentVaR, etc.). In the forthcoming ‘Basel IV’ regulation the banks must estimate a very
extreme quantile, namely a 99.9% quantile with 1 year horizon related to the default losses in the
trading book, knwon as DRC, Default Risk Charge. Because of the lack of analytical models to
calculate or to approximate satisfactory this quantile, all the banks adopt the Montecarlo simulation
approach. Then we aim to compare some basic quantile estimators vs some more advanced tools, in
order to check their performances in the bias-variance dimensions vs their computational complexity.

IN recent years, the risk management field received an increasing attention, due to the growth

1. Financial Context. The DRC Risk Measure

The Default Risk Charge is a regulatory measure designed to capture default risk within the trading
portfolio, as required by Basel standards, particularly within the framework of the Fundamental
Review of the Trading Book (FRTB) outlined in the BCBS 457[2] document published by the Basel
Committee on Banking Supervision. This model is designed to quantify the risk of loss resulting
from the failure of a counterparty or issuer of financial instruments, including equity, bond, and
derivative exposures. It is worth to note that banks could have short positions on the issuer debt,
such as CDS, where the defaults imply a profit, not a loss. Then any DRC model requires a careful
preliminary data management process where the granular positions related to each obligor are
netted, aggregated, etc. The Default Risk Charge (DRC) regulatory set-up is described by Chapter 7
('The Default Risk Charge’) of the BCBS 457 document[2]. In the updated Basel Framework, the
requirements related to the DRC are contained in section MAR 33, specifically in paragraphs MAR
33.18 - 33.38. These documents establish the criteria for calculating default risk, specifying that:

¢ It must be calculated over a one-year horizon.
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¢ It must reflect a 99.9% threshold. The ECB EGIM [4] prescribes that the DRC measure must be
provided with a confidence interval of 95%.

¢ It must include all exposures sensitive to default risk within the trading portfolio, excluding
those specifically defined as "non-material risks".

The model aims to compute a portfolio loss distribution representative of overall credit risk. The
DRC value is typically defined as the loss at the regulatory percentile (e.g., 99.9%) over a one-year
horizon, with the loss defined as:

PnL =Y EAD,-1p,-LGD,, (1)
n

where EAD,, is the exposure on the n-th instrument, D,, express the default status for the legal
entity linked to that instrument and LGD,, is the loss given default.

The DRC simulation is implemented through a Monte Carlo approach, a probabilistic methodology
that allows for a detailed modeling of uncertainty related to risk factors. Each iteration of the
simulation includes:

¢ Simulation of Credit Drivers: Stochastic scenarios for credit risk factors are generated for
each Legal Entity in the portfolio. This process simulates the defaults of individual Legal
Entities.

¢ Calculation of Recovery Rates: For each scenario, the recovery rate associated with the
simulated defaults of Legal Entities is estimated. This parameter is crucial for quantifying the
recoverable loss amount.

¢ Determination of PnL: Using the simulated credit drivers and calculated recovery rates, the
Profit and Loss (PnL) associated with each financial instrument in the portfolio is estimated,
consolidating the results to obtain the overall loss distribution.

Further details and methodological applications can be found in Basel documentation, including
BCBS 352 ("Standards: Minimum capital requirements for market risk") and the aforementioned
BCBS 457[2], which provide detailed guidelines for the implementation and reporting of the DRC.

1.1 Credit Worthiness Index

The random variable X; is the Credit Worthiness Index (CWI) and reflects the credit quality of legal
entity 7. It is simulated for each legal entity considered through a stochastic process defined as:

_ Z] ﬁl] AZ] i 0; AWl

AX;
Pi Oi

@)

where i refers to the legal entity, j refers to the credit drivers associated with the legal entity, Z; is a
multidimensional stochastic process of credit driver returns with mean 0 and covariance matrix C,
W; is a Gaussian variable NV (0, 1) independent from Z;, B;; are the credit drivers’ weights, p is the
total variance matrix of the Credit Worthiness process and v and ¢ are the volatility matrix of the
systemic component and idiosyncratic component, respectively.

Specifically, the processes X; = Y AX;At simulate various risk drivers as a multivariate Gaussian
distribution using the historical correlation matrix of the drivers, while the idiosyncratic component
is simulated as a standard Gaussian distribution N'(0,1) scaled by the volatility o; of the reference
issuer. The CWI processes are used to determine the default of a given obligor. This occurs when
X; falls below a given threshold Tj, related to their rankings:

D, = {X; < @ (PD;)}, 3)

with ® the cumulative distribution of a standard Gaussian and PD; the probability of default of the
i-th obligor.
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1.2 Recovery Rates

Once defaults have been determined in each scenario, the recovery rate associated with each legal
entity is computed. The model currently implemented assumes that the recovery rate process for
obligor i, R;, is identical to the CWI process:

Xi

Ry = =t
1 pl

)
Finally, the final recovery rate value is obtained using the inverse of the Beta distribution:

i =B (F), 6)

where F; is a variable defined in [0, 1]. The use of a B function is justified because the output is a
variable in the range [0, 1]. The parameters « and B of the Beta function are derived from input data
and vary for each obligor. It is defined as:

D(R;/ VAt

fi= (cbu/m) )

where @ is the cumulative Gaussian distribution, and ¢ is the threshold determining the default of
obligor i after time At. This is possible since the argument of the cumulative function corresponds
to the CWI value, and the re-scaling ensures maximum recovery rate values when R; equals the
default threshold.

(6)

1.3 PnL Calculation

PnL is computed by aggregating the individual PnL for each instrument. The PnL for each
instrument j is defined as:

PnLf = (MtM]- - VaD]-S) x1p,, @)

where MtM; is the market value of the instrument, and VaD].S is the simulated value of instrument j
and 1p, takes into account the default of the legal entity i corresponding to instrument j. The actual
calculation of VaD? varies depending on the instrument and on the simulated recovery rate RI-S. For
example:

1. VaD]S = MtM; X Rf if the instrument is a Bond;

2. VaDjS = MtM; x (1 — R?) if the instrument is a Credit Default Swap.

Once the PnL for each instrument j is computed, it is summed across all the instruments. This
produces a PnL value for each scenario simulated and thus a vector with a length equal to the
number of scenarios, whose 99.9th quantile represents the DRC value for the portfolio.

2. The Quantile Estimation

2.1 Review of Classical Results

The empirical quantile is used very often as a "plug and play" tool to estimate from the data the
unknown true quantile, but at the end it is just one of the many approaches for the estimation
purpose, exactly as the arithmetic median is an alternative to the classical arithmetic average to
estimate an expected value. Let us introduce some simple notation. Let be X the random variable
source of our data and suppose to have an i.i.d sample drawn from this distribution. We indicate
with X, the n-th order statistics, i.e. the n — th value after sorting by ascending order all the
outcomes. Equipped with this notation, the distribution F,; of the n-th order statistics is given by:

Fuy (x) = Pr{X(,y < x} =Pr{all X; < x} = F"(x), 8)

N
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aq Empirical
Empirical RF TF HD EP DRC
10* Scenarios
1st case 32.3% 16.7% 15.4% 14.8% 15.5% 311,050,198

2nd case 42.6% 36.4% 34.1% 29.1% 31.3% 97,262,380

3rd case 73.2% 36,2% 45,0% 41.2% 39.2% 189,501,850

2x10° Scenarios

1st case 6,66% 6,08% 5,96% 5,61% 5,98% 334,983,354

2nd case 23.4% 6.51% 6.37% 6.84% 6.34% 113,399,158

3rd case 35.5% 14.7% 14.3% 14.7% 14.2% 187,788,177

16x10° Scenarios

1st case 1.57% 1.44% 1.40% 1.37% 1.41% 329,265,406

2nd case 1.55% 1.38% 1.41% 1.68% 1.41% 112,998,640

3rd case 1.28% 1.16% 1.17% 1.30% 1.17% 186,601,892

TABLE 1: Uncertainty for 3 different portfolio, with 10%, 2 x 10> and 16 x 10° scenarios. In the table RE, TE, HD and EP
stand respectively for Rectangular filter, triangular filter, Harrell-Davis estimator, Epanechnikov estimator. In the last
column we have reported the empirical DRC value.

while the empirical quantile Q,(«) (supposing that the positive values represent the profits, the
negative values the losses) writes as below:

Qn(rx|X1,...,Xn) = X[(l*D{)XH]' (9)

The integer part operator [] is needed to take an actual outcome from the sample.There some slightly
different versions, according to less or more conservative (prudent) approaches. The most popular
statistical tools (R,SAS, Matlab, Excel) also allow for different implementations of the quantile. A
very relevant result for the order statistics is their asymptotic distribution. It can be shown that
while the min() and the max() of the distribution never converge to the gaussian random variable,
it happens for all the other order statistics. Namely we have the following result

a(1—a)f'(Q(a))

E(Quln)) = Qo) - 50 T3S + 01/ (10
Var(Qn(@)) = —21=% 4 5172, (11)
01+ 2) Q@)

A seminal reference in this filed is the textbook by[8] and in the work by [3]. If one analyzes the
uncertainty of the empirical quantile as the parameters (1, ) change, one easily finds that te more
extreme is the confidence level « and smaller is the sample size 7, then less accurate (high variance)
is the quantile estimator. Several attempts have been made in the inferential statistics field to define
better estimators in the usual bias-variance trade-off.

2.2 Advanced Estimators from Order Statistics

We select some alternative estimators of the quantile as competitos of the basic empirical estimation.
Considering the definition for an L-estimator as:

Qun =) w;X;. (12)
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The rectangular filter is defined by w; = 1/ in an interval (& — €, & + €].

The triangular filter is defined in the same interval with w; maximum at &« and symmetrically
decreasing to 0 at « + €.

Harrell-Davis estimator[7]:

w;i = li/n(a,b) = Iij_1)/n(a,b),
with
a=a(n+1) b=(1-a)(n+1) Li(a,b) = ¢(B(a,b)),
where « is the confidence level, n total number of scenarios, ¢ cumulative distibution function e B is

the beta Euler function.
Finally we have the Epanechnikov estimator:

w; = Kj/u(a,h) — Kj_1)/n(a, h),

where
0 ifx<a-—h
K(a,h) =1 430a 1y 4gp _pox<asth
1 if x> p+h
h = 0.0005.

3. Comparison of the Different Estimators

We extracted the PnL results from the DRC described in the previous section and applied the
estimators presented in the "Introduction". The errors were assessed using the jackknife resampling
method. Our findings indicate that the results obtained from the different estimators are consistent,
with error estimates that remain comparable across 16 million scenarios. Indeed, for a sample
portfolio composed of some thousands of positions (bonds, derivatives), belonging to about thousand
obligors, we obtained the relative uncertainties expressed in Tab. 1. The uncertainty in the table
represent the half width of a 95% confidence level of the quantile estimator. It is calculated by
bootstrap approach for the more advanced tools, by the analytical results in Section "Review of
Classical Results" for the empirical quantile. The same results are graphically expressed in Fig. 1
and 2.

The best result was obtained with the Harrell-Davis estimator[7], but the improvement is only 16%
compared to the uncertainty of the empirical quantile. We analyzed these results by considering
correlation values in the range [0.9985,0.9995]. Specifically, we computed the correlation between
the vector containing the elements at positions [0.9985,0.999] and the vector [0.9985 + ¢€,0.999 + €],
with 0 < e < 0.0005. We obtained a mean correlation of 0.999, which indicates that, in this range, the
points are highly correlated. Consequently, there is no significant difference whether we consider the
position 0.999 directly or a nearby range. In other words, the correlation between any order statistics
and the next one is so high that the smoothing technique embedded in the L-Estimators does not
provide a relevant benefit in reducing the variance. Furthermore, since this is an extreme point, the
range cannot be symmetrically extended beyond e = 0.001. To further support our analysis, we
tested different distributions, extracting datasets of size 10°, 10°, and 107, and comparing the results.
We considered both the normal distribution (not heavy-tailed) and the lognormal distribution
(heavy-tailed), but we present here only the results for the lognormal distribution, as they are similar
to those obtained with the normal distribution. We obtained the following absolute differences in
percentage error:

e 10° points: ~ 24%;
* 10° points: ~ 10%;

* 107 points: ~ 0.05%.

www.iasonltd.com 9
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These values are computed as:
|o(HD) — o(emp)|
q
where g represents the empirical quantile value.

This result demonstrates that, beyond a certain dataset size, the different estimators yield the

same uncertainty. Consequently, their adoption does not provide a significant advantage over the
empirical quantile estimator.

, (13)
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FIGURE 1: Uncertainty for 3 different portfolio, with 10* scenarios. In the legend RE, TE, HD and EP stand respectively for
Rectangular filter, triangular filter, Harrell-Davis estimator, Epanechnikov estimator.
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FIGURE 2: Uncertainty for different scenarios. In the legend RE, TF, HD and EP stand respectively for Rectangular filter,
triangular filter, Harrell-Davis estimator, Epanechnikov estimator.
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4. Conclusions

We exploit several techniques to face a very hard statistical problem, the estimation of an extreme
quantile required by the banking regulations. The benchmark was the empirical quantile, some
competitors come from classical theory, such as the filters, other were proposed by the statistical
literature. We run some expercises on a real world large portfolio. We found that for a relative
small number of simulations #, such as O(n) = 10%,10°, the Harrel-Davis and the Epanechnikov
methods show a relevant improvement in the variance reduction goal. when we can perform 10°
or more simulations, the uncertainty of the more advanced tools becomes very close to the basic
empirical quantile. To summarize, a bank should properly combine its hardware and software
resources (and constraints) with its accuracy target, in order to achieve an adequate and sustainable
risk measurement process. @
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